Answer:
Reflection
Explanation:
As light is scattered on items which do not generate illumination, they reflect it. This is attributed to the fact that light reflects off of themselves. The moon, for example, absorbs sunlight such that it can be seen at night.
We can use the equation E = k | Q | r 2 E = k | Q | r2 to find the magnitude of the electric field. The direction of the electric field is determined by the sign of the charge,
<h3>What is electric and magnetic field ?</h3>
With the use of electricity and other types of artificial and natural illumination, invisible energy fields known as electric and magnetic fields (EMFs) and radiation are created.
- While the magnetic field is discernible by the force it exerts on other magnetic particles and moving electric charges, the electric field is actually the force per unit charge experienced by a non-moving point charge at any given location inside the field.
Learn more about Electromagnetic field here:
brainly.com/question/14372859
#SPJ4
ΔU =
-Wint
Consdier the work of of
interaction is W =m*g*h - equation -1
and the Potential energy U.
Final Potential energy Uf =0
, And the Initial Potential Energy Ui =m*g*h
<span>Now we will write the
equation for a Change in Potential energy ΔU,</span>
ΔU = Uf
- Ui
= 0-m*g*h
<span> ΔU = -m*g*h --Equation 2</span>
Now compare the both equation
<span>Wint = -ΔU</span>
we can rewrite the above
equation
ΔU =
-W.
<span>So our Answer is ΔU = -W. .</span>
<span> </span>
Answer:
a = 2 [m/s²]
Explanation:
To be able to solve this problem we must make it clear that the starting point when the time is equal to zero, the velocity is 5 [m/s] and when three seconds have passed the velocity is 11 [m/s], this point is the final point or the final velocity.
We can use the following equation.

where:
Vf = final velocity = 11 [m/s]
Vo = initial velocity = 5 [m/s]
a = acceleration [m/s²]
t = time = 3 [s]
![11 = 5 + a*3\\6=3*a\\a= 2[m/s^{2} ]](https://tex.z-dn.net/?f=11%20%3D%205%20%2B%20a%2A3%5C%5C6%3D3%2Aa%5C%5Ca%3D%202%5Bm%2Fs%5E%7B2%7D%20%5D)