Answer:
Explanation:
Given an LC circuit
Frequency of oscillation
f = 299 kHz = 299,000 Hz
AT t = 0 , the plate A has maximum positive charge
A. At t > 0, the plate again positive charge, the required time is
t =
t = 1 / f
t = 1 / 299,000
t = 0.00000334448 seconds
t = 3.34 × 10^-6 seconds
t = 3.34 μs
it will be maximum after integral cycle t' = 3.34•n μs
Where n = 1,2,3,4....
B. After every odd multiples of n, other plate will be maximum positive charge, at time equals
t" = ½(2n—1)•t
t'' = ½(2n—1) 3.34 μs
t" = (2n —1) 1.67 μs
where n = 1,2,3...
C. After every half of t,inductor have maximum magnetic field at time
t'' = ½ × t'
t''' = ½(2n—1) 1.67μs
t"' = (2n —1) 0.836 μs
where n = 1,2,3...
Answer:
Explanation:
doubling the speed will have a greater impact on kinetic energy as KE is a product of mass and the square of velocity.
KE = ½mv²
Base KE = ½(0.005)2.0² = 0.01 J
doubling the mass
KE = ½(0.010)2.0² = 0.02 J
doubling the velocity
KE = ½(0.005)4.0² = 0.04 J
They determine if it has a negative or positive charge
Answer:
the the the the eeeeeeeeeeeeeeeeeeeeee
Explanation:
These are the correct answers. I couldn't get the rest of the answers