1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mestny [16]
3 years ago
12

I need to present a proposal for a device that minimizes heat transfer. I need help PLEASE

Physics
1 answer:
eimsori [14]3 years ago
3 0
Engineers must understand the thermal properties of materials to be able to predict the performance of any given material over its lifetime in a specific application. Engineers apply their understanding of the thermal properties of materials to the design of efficient heat transfer materials for better engines, spacecraft and electronic devices. They also examine the thermal properties of insulation to design more efficient buildings and homes. Engineers develop ways to minimize heat transfer from a motor to the surrounding environment. Often they find ways to insulate the motor to decrease the convective heat transfer from the motor. They design a refrigerator to keep heat out of the inside, as well as keep the refrigerator contents cool. hope this helped
You might be interested in
I need help ASAP please :)
rusak2 [61]

Density offers a convenient means of obtaining the mass of a body from its volume or vice versa; the mass is equal to the volume multiplied by the density (M = Vd), while the volume is equal to the mass divided by the density (V = M/d).

M = V d

M = 1.4 * 2 = 2.8 kg

7 0
2 years ago
Will the velocity of the book change as it moves across the surface with NO friction? Explain your answer.
MakcuM [25]

No velocity will not be changed

Why?

According to Newtons 1st law the velocity of a moving object remains unchanged unless a external force affect that.

6 0
2 years ago
Read 2 more answers
A very large sheet of insulating material has had an excess of electrons placed on it to a surface charge density of –3.00nC/m2
lys-0071 [83]

Answer: sheet of charge

Explanation:

a )

Since the charge is negative , potential will be negative near it . At a far point potential will be less negative. So potential will virtually increase on going away from the sheet . At infinity it will become almost zero. Electric field will be towards the plate , so potential will decrease towards the plate.

b ) The shape of equi -potential surface will be plane parallel to the sheet of charge because electric field will be perpendicular to the sheet of charge and almost uniform near the sheet of charge.   The equi- potential surface is always perpendicular to electric field.

C ) Electric field which is almost uniform near the sheet of charge is equal t the following

E = σ / ε₀ where  σ is charge density of surface and  ε₀ is permittivity of medium whose value is 8.85 x 10⁻¹²

E = 3 x 10⁻⁹ / 8.85 x 10⁻¹²

= .3389 x 10³

= 338.9 V / m

spacing between 1 V

= 1 / 338.9 m

= 2.95 X 10⁻3 m

= 2.95 mm.

3 0
3 years ago
A spherical, conducting shell of inner radius r1= 10 cm and outer radius r2 = 15 cm carries a total charge Q = 15 μC . What is t
lutik1710 [3]

a) E = 0

b) 3.38\cdot 10^6 N/C

Explanation:

a)

We can solve this problem using Gauss theorem: the electric flux through a Gaussian surface of radius r must be equal to the charge contained by the sphere divided by the vacuum permittivity:

\int EdS=\frac{q}{\epsilon_0}

where

E is the electric field

q is the charge contained by the Gaussian surface

\epsilon_0 is the vacuum permittivity

Here we want to find the electric field at a distance of

r = 12 cm = 0.12 m

Here we are between the inner radius and the outer radius of the shell:

r_1 = 10 cm\\r_2 = 15 cm

However, we notice that the shell is conducting: this means that the charge inside the conductor will distribute over its outer surface.

This means that a Gaussian surface of radius r = 12 cm, which is smaller than the outer radius of the shell, will contain zero net charge:

q = 0

Therefore, the magnitude of the electric field is also zero:

E = 0

b)

Here we want to find the magnitude of the electric field at a distance of

r = 20 cm = 0.20 m

from the centre of the shell.

Outside the outer surface of the shell, the electric field is equivalent to that produced by a single-point charge of same magnitude Q concentrated at the centre of the shell.

Therefore, it is given by:

E=\frac{Q}{4\pi \epsilon_0 r^2}

where in this problem:

Q=15 \mu C = 15\cdot 10^{-6} C is the charge on the shell

r=20 cm = 0.20 m is the distance from the centre of the shell

Substituting, we find:

E=\frac{15\cdot 10^{-6}}{4\pi (8.85\cdot 10^{-12})(0.20)^2}=3.38\cdot 10^6 N/C

4 0
3 years ago
What is cardiovascular eficiencia
Minchanka [31]
English: Cardiovascular efficiency depends on a number of factors. One measure is called stroke volume, which is the volume of blood pumped per heartbeat. A fit individual has a larger stroke volume, which means a greater volume of oxygen is delivered to the body per heartbeat.

Spanish: La eficacia cardiovascular depende de una serie de factores. Una medida se denomina volumen sistólico, que es el volumen de sangre bombeada por latidos cardíacos. Un individuo en forma tiene un volumen de movimiento mayor, lo que significa que un mayor volumen de oxígeno es entregado al cuerpo por latidos cardíacos.
5 0
3 years ago
Other questions:
  • As the temperature decreases, the atoms lose energy. The atoms begin to move slower. They are held together by attractive forces
    5·2 answers
  • Equation need answers not quite sure
    9·1 answer
  • Can someone help me?!!
    8·1 answer
  • Two infinite plane sheets with uniform surface charge densities are placed parallel to each other with separation d. in the regi
    5·1 answer
  • A toy car has a momentum of 3 kilogram meters per second south. The car has a 1-kilogram mass. Which is the velocity of the car?
    12·1 answer
  • If the distance between the two objects is reduced in half, what will be the changed force of attraction between them?
    12·1 answer
  • A ball is thrown straight upward at 10 m/s. Ideally (no air resistance), the ball will return to the thrower's hand with a speed
    14·1 answer
  • explain why when water is poured on a dry class slab it spreads uniformly but it forms spherical droplets on a waxed glass slab​
    8·1 answer
  • The image shows devices that convert wind energy into electrical energy. What is one advantage of using this type of device in p
    11·1 answer
  • Activity A:
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!