Answer:
L= 0.059 mH
Explanation:
Given that
R = 855 Ω and C = 6.25 μF
V= 84 V
Frequency
ω = 51900 1/s
We know that

L=Inductance
C=Capacitance
ω =angular Frequency
ω² L C =1
(51900)² x L x 6.25 x 10⁻⁶ = 1
L= 5.99 x 10⁻⁵ H
L= 0.059 mH
F = mass x acceleration
We have mass = 200kg
and acceleration = 3 m/s^2 so...
F = (200)(3)
F = 600 N
Given:
V1 = 4m3
T1 = 290k
P1 = 475 kpa = 475000 Pa
V2 = 6.5m3
T2 = 277K
Required:
P
Solution:
n = PV/RT
n = (475000 Pa)(4m3) / (8.314 Pa-m3/mol-K)(290k)
n = 788 moles
P = nRT/V
P = (788 moles)(8.314
Pa-m3/mol-K)(277K)/(6.5m3)
P = 279,204 Pa or 279 kPa
Wow ! This question reads like it might have come from one of
Faraday or Maxwell's original laboratory notebooks.
Choice-A is the correct one, when you consider what "conductance"
means. Conductance is just 1/resistance .
So when you see
"A) Current is proportionate to the conductance of the circuit and
precisely proportional to the voltage applied across the circuit."
what it's saying is
"Current is inversely proportional to the resistance of the circuit, and
directly proportional to the voltage applied across the circuit."
If you write the equation for all those words, it looks like
I = V / R
and that's correct.
Answer:
1) 130, 000 J
2) 1 J
Explanation:
1)
Work done is product of force in Newtons and distance in meters
W=Fd
Given an average force of 5,200 N and distance of 25 m then we evaluate that
Work done=5200*25=130, 000 Nm or Joules
2)
Similarly, for the second question, given force of 1N and distace of 1 m then the work done will be
W=1*1=1 J