Extinct<span> might be a word you associate with animals that lived long ago, like the dinosaurs, but did you know that over 18,000 species are classified as "threatened" (susceptible to extinction) today? Scientists involved in wildlife conservation have a tough job; they are in charge of determining what needs to be done to prevent a species from becoming extinct. Habitat, food supply, and impacts of local human populations are just a few of the factors these scientists take into account. It is a lot to keep track of for a single location, but the job becomes even harder when it is a migratory animal. In this science project, you will get a firsthand look at their job. You will access </span>real<span> data about migratory birds and use satellite images to analyze their habitats, then come up with a conservation plan to protect the species from extinction.</span>
Answer:
3.6 seconds
Explanation:
Given:
y₀ = y = 0 m
v₀ = 31 sin 35° m/s
a = -9.8 m/s²
Find: t
y = y₀ + v₀ t + ½ at²
0 = 0 + (31 sin 35°) t + ½ (-9.8 m/s²) t²
0 = 17.78t − 4.9t²
0 = t (17.78 − 4.9t)
t = 0 or 3.63
Rounded to the nearest tenth, the ball lands after 3.6 seconds.
Answer:
I = I₀ + M(L/2)²
Explanation:
Given that the moment of inertia of a thin uniform rod of mass M and length L about an Axis perpendicular to the rod through its Centre is I₀.
The parallel axis theorem for moment of inertia states that the moment of inertia of a body about an axis passing through the centre of mass is equal to the sum of the moment of inertia of the body about an axis passing through the centre of mass and the product of mass and the square of the distance between the two axes.
The moment of inertia of the body about an axis passing through the centre of mass is given to be I₀
The distance between the two axes is L/2 (total length of the rod divided by 2
From the parallel axis theorem we have
I = I₀ + M(L/2)²
Answer:
A mass of 10 kilograms lifted 10 meters in 5 seconds.
Explanation:
Power can be defined as the energy required to do work per unit time.
Mathematically, it is given by the formula;
But Energy = mgh
Substituting into the equation, we have

Given the following data;
Mass = 10kg
Height = 10m
Time = 5 seconds
We know that acceleration due to gravity is equal to 9.8 m/s²

Hence, a mass of 10 kilograms lifted 10 meters in 5 seconds would produce the most power.
ONEEEEEEEEEEEEEEEEEEEEEEEEE