The amount of diffraction depends on the wavelength of light, with shorter wavelengths being diffracted at a greater angle than longer ones (in effect, blue and violet<span> light are diffracted at a larger angle than is red light).
I hope my answer has come to your help. God bless and have a nice day ahead!
</span>
Answer:
(1) passed through the foil
Explanation:
Ernest Rutherford conducted an experiment using an alpha particle emitter projected towards a gold foil and the gold foil was surrounded by a fluorescent screen which glows upon being struck by an alpha particle.
- When the experiment was conducted he found that most of the alpha particles went away without any deflection (due to the empty space) glowing the fluorescent screen right at the point of from where they were emitted.
- While a few were deflected at reflex angle because they were directed towards the center of the nucleus having the net effective charge as positive.
- And some were acutely deflected due to the field effect of the positive charge of the proton inside the nucleus. All these conclusions were made based upon the spot of glow on the fluorescent screen.
Freezing point of the water is known as 273 K
Hope this helps!
Power is the rate work done given by dividing work done by unit time. It is measured in watts equivalent to J/s.
In this case the force by the student is mg = 490 N (taking g as 9.8m/s²)
Work done is given by force × distance,
Therefore, Power =(force × distance)/ time, but velocity/speed =distance/time
Thus, Power = force × speed/velocity
= 490 N × 1.25
= 612.5 J/S (Watts)
Hence, power will be 612.5 Watts.