We are asked to solve and determine the magnitude of the current flowing through the first device. In order for us to have a better understanding of the problem, we can refer to the attached picture which contains electric circuit diagram. Since it the problem we are already given with an electromotive source or the voltage supply and since the two resistance is in parallel, it would clearly mean that the voltage drop in each resistance is just the same. The resistance 1 uses the 40 volts at the same time the resistance 2 uses 40 volts also. Solving further for the current, we can apply Ohm's law which V = IR where "V" represents the voltage, the "I" represents the current and "R" represents the resistance.
Such as the solution in obtaining current is shown below:
I = V / R, substitute values we have it
I = 40 volts / 1208 ohms
I = 0.0331 Amperes
Therefore, the current flowing in the first device is
0.033 Amperes or 33 milliAmperes.
Answer:
Scenario A, B and E is True.
Explanation:
Scenario A) True. Removing carbon dioxide from atmosphere decreases greenhouse effect of atmosphere. Thus, temperature rise decreases.
Scenario B) True. The more evaporation creates the more greenhouse effect. Therefore, temperature rise increases.
Scenario C) False. Removing carbon dioxide from atmosphere decreases greenhouse effect of atmosphere. Thus, temperature rise decreases.
Scenario D) False. The more evaporation creates the more greenhouse effect. Therefore, temperature rise increases.
Scenario E) True. If reflected radiation increases from Earth, temperature rise of the Earth will decrease. Ice cover increases reflectivity which leads temperature level decrease.
Scenario F) False. If reflected radiation increases from Earth, temperature rise of the Earth will decrease. Ice cover increases reflectivity which leads temperature level decrease.
The acceleration of the first block (4 kg) is -9.8 m/s².
The given parameters:
- <em>Mass of the first block, m₁ = 4.0 kg</em>
- <em>Mass of the second block, m₂ = 2.0 kg</em>
The net force on the system of the two blocks is calculated as follows;

where;
- <em>T </em><em>is the tension in the connecting string due weight of the first block</em>

Thus, the acceleration of the first block (4 kg) is -9.8 m/s².
Learn more about net force on two connected blocks here: brainly.com/question/13539944
Answer: Force F will be one-sixteenth of the new force when the charges are doubled and distance halved
Explanation:
Let the charges be q1 and q2 and the distance between the charges be 'd'
Mathematical representation of coulombs law will be;
F1=kq1q2/d²...(1)
Where k is the electrostatic constant.
If q1 and q2 is doubled and the distance halved, we will have;
F2 = k(2q1)(2q2)/(d/2)²
F2 = 4kq1q2/(d²/4)
F2 = 16kq1q2/d²...(2)
Dividing equation 1 by 2
F1/F2 = kq1q2/d² ÷ 16kq1q2/d²
F1/F2 = kq1q2/d² × d²/16kq1q2
F1/F2 = 1/16
F1 = 1/16F2
This shows that the force F will be one-sixteenth of the new force when the charges are doubled and distance halved
Right, as you mentioned in the comments, you find
by plugging in the different values of
.
For
, we have



Similarly, for
, you get


