1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RoseWind [281]
3 years ago
10

WILL GIVE BRAINLIEST

Mathematics
2 answers:
boyakko [2]3 years ago
5 0

Answer:

1) 5280 ft

2) 9.44882 inches

3) 512 ounces

Step-by-step explanation:

lozanna [386]3 years ago
4 0

Answer: 1) 5280 ft

2) 9.44882 inches

3) 512 ounces

Step-by-step explanation:

You might be interested in
Laura sees a horse pulling a buggy. She wonders how it can accelerate if the action of the horse pulling the cart would causes a
KatRina [158]

Answer:

The net forces exerted on the horse and cart are not the same, so they are not balanced forces.

Step-by-step explanation:

Please see the Newton's 2nd Law which states  that an object accelerates if there is a net or unbalanced force on it. In this scenario there is just one force exerted on the wagon i.e: the force that the horse exerts on it. The wagon accelerates because the horse pulls on it. And the amount of acceleration equals the net force on the wagon divided by its mass.

As there are two forces the push and pull the horse; the wagon pulls the horse backwards, and the ground pushes the horse forward. The net force is determined by the relative sizes of these two forces.

If the ground pushes harder on the horse than the wagon pulls, there is a net force in the forward direction, and the horse accelerates forward, and if the wagon pulls harder on the horse than the ground pushes, there is a net force in the backward direction, and the horse accelerates backward.

If the force that the wagon exerts on the horse is the same size as the force that the ground exerts, the net force on the horse is zero, and the horse does not accelerate.

7 0
3 years ago
Read 2 more answers
find the gradient of the line joining (3,7) and (6,9). Hence, find the acute angle it makes with the positive x-y axis​
stiv31 [10]

Answer:

33.7 degrees

Step-by-step explanation:

As we go from (3,7) to (6,9), x increases by 3 and y increases by 2.  Thus, the gradient (slope) of the line connecting these two points is

m = rise / run = 2/3.  Using the slope-intercept formula y = mx + b, we obtain

7 = (2/3)(3) + b, or 7 = 2 + b, so we see that b = 5 and y = (2/3)x + 5.  The y-intercept is (0, 5).

Next we find the x-intercept.  We set y = (2/3)x + 5 = to 0 and solve for x:

(2/3)x = -5, or (3/2)(2/3)x = -5(3/2), or x = -15/2, so that the x-intercept is

(-15/2, 0).  This line intersects the x-axis at (-15/2, 0).

Now look at the segment of this line connecting (-15/2, 0) and (0, 5).  Here x increases by 15/2 and y increases by 5, and so the tangent of the acute angle in question is

tan Ф = 5 / (15/2) = 10 / 15 = 2/3.

Using the inverse tangent function, we get Ф = arctan 2/3, or approx.

33.7 degrees.

I believe you meant "the acute angle it makes with the positive x-axis."​

3 0
3 years ago
John is going camping, and he needs to buy a tent. The outdoor store has one that cost $90, but it's on sale for 25% off. What i
pochemuha

Answer:

A

Step-by-step explanation:

<em>Okay so, im not the best at explaining, but so we have a percentage. its 25%. you want to take the 25% and put it over 100 because a percentage is a number or ratio expressed as a fraction of 100. so it will be written as 25%/100</em>

<em />

<em>divide 25 by 100 and you get 0.25, correct? so that's one step further towards the answer.</em>

<em>then we write x/90 because we don't know (well we do) what we're gonna put. but, we're gonna multiply 0.25 by 90 and we get 22.5, which is equivalent to </em><em>22.50</em><em>.</em>

7 0
3 years ago
Read 2 more answers
Solve for v.<br> 4v = -7 + 3v
goblinko [34]

<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em>.</em>

<em>Hope </em><em>it</em><em> </em><em>will</em><em> </em><em>be</em><em> </em><em>helpful</em><em> </em><em>to</em><em> </em><em>you</em><em>.</em><em>.</em><em>.</em>

<em>Good</em><em> </em><em>luck</em><em> </em><em>for</em><em> </em><em>your</em><em> </em><em>test</em><em>.</em><em>.</em><em>.</em>

<em>(. ❛ ᴗ ❛.)</em>

5 0
3 years ago
Read 2 more answers
¿CÓMO ALCANZÓ EL HOMBRE EL CONCEPTO DE INFINITO?
Butoxors [25]

Trabajar con el infinito es un asunto complicado. Las paradojas de Zenón alertaron por primera vez a los filósofos occidentales sobre esto en 450 a. C. cuando argumentó que un corredor rápido como Aquiles tiene un número infinito de lugares para alcanzar durante la persecución de un corredor más lento. Desde entonces, ha habido una lucha por entender cómo usar la noción de infinito de una manera coherente. Este artículo se refiere al importante y controvertido papel que juegan los conceptos de infinito y el infinito en las disciplinas de la filosofía, las ciencias físicas y las matemáticas.

Los filósofos quieren saber si hay más de un concepto coherente de infinito; qué entidades y propiedades son infinitamente grandes, infinitamente pequeñas, infinitamente divisibles e infinitamente numerosas; y qué argumentos pueden justificar las respuestas de una forma u otra.

Aquí hay algunos ejemplos de estas cuatro formas diferentes de ser infinito. La densidad de la materia en el centro de un agujero negro es infinitamente grande. Un electrón es infinitamente pequeño. Una hora es infinitamente divisible. Los números enteros son infinitamente numerosos. Estas cuatro afirmaciones están ordenadas de mayor a menor controversia, aunque las cuatro han sido cuestionadas en la literatura filosófica.

Este artículo también explora una variedad de otras preguntas sobre el infinito. ¿Es el infinito algo indefinido e incompleto, o es completo y definido? ¿Qué quiso decir Tomás de Aquino cuando dijo que Dios es infinitamente poderoso? ¿Estaba en lo cierto Gauss, que fue uno de los más grandes matemáticos de todos los tiempos, cuando hizo la controvertida observación de que las teorías científicas involucran infinitos simplemente como idealizaciones y simplemente para facilitar la aplicación de esas teorías, cuando en realidad todas las entidades físicamente reales son ¿finito? ¿Cómo cambió la invención de la teoría de conjuntos el significado del término "infinito"? ¿Qué quiso decir Cantor cuando dijo que algunos infinitos son más pequeños que otros? Quine dijo que los primeros tres tamaños de los infinitos de Cantor son los únicos en los que tenemos motivos para creer. Los platónicos matemáticos no están de acuerdo con Quine. ¿Quién tiene razón? Veremos que existen profundas conexiones entre todas estas cuestiones.

7 0
3 years ago
Other questions:
  • Alex spent 25% of his money on a sports drink. Then he spent 25% more on trail mix. He has $9 left. How much money did he start
    12·2 answers
  • Find the sum of 15/9 + 4/6
    7·1 answer
  • A ladder leaning against a wall makes an angle of 45º with the ground. If the length of the ladder is 20 feet, find the approxim
    12·2 answers
  • The sum of two angles formed by the intersection of two lines is 50°. Find the measures of the angles.
    6·2 answers
  • HELPPP!<br><br><br> A.170∘ B.25∘ C.5∘ D.10∘
    6·1 answer
  • The circumference of the hub cap of a tire is 82.14 centimeters. Find the area of this hub cap. Use 3.14 for pi
    5·1 answer
  • I need help please answer quick!
    12·1 answer
  • Brainliest if you answer correctly
    10·1 answer
  • tickets to a waterpark cost $53 per person. write an expression to show the total cost of tickets for p people (pre algebra)
    6·1 answer
  • WILL GIVE BRAINLIEST
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!