Answer:

Explanation:
Hello there!
In this case, according to the given information, it turns out possible to set up the following energy equation for both objects 1 and 2:

In terms of mass, specific heat and temperature change is:

Now, solve for the final temperature, as follows:

Then, plug in the masses, specific heat and temperatures to obtain:

Yet, the values do not seem to have been given correctly in the problem, so it'll be convenient for you to recheck them.
Regards!
Milk
Explanation:
because milk is very thick youknow here I go
Answer:
the equilibrium constant is 1.8 x 10⁻5 and strongly favor the reactants.
Explanation:
the chemical reaction provided for the two equation are the same but different direction i.e a reversible reaction. Assuming, the mass of reactants and product and temperature remain constant.
therefore, the equilibrium constant K, is 1.8 x 10⁻5. this is a very small value of K, thereby strongly favor the backward direction to form reactant.
11.48-gram of
are needed to produce 6.75 Liters of
gas measured at 1.3 atm pressure and 298 K
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
First, calculate the moles of the gas using the gas law,
PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 1.3 atm
V= 6.75 Liters
n=?
R= 
T=298 K
Putting value in the given equation:


Moles = 0.3588 moles
Now,


Mass= 11.48 gram
Hence, 11.48-gram of
are needed to produce 6.75 Liters of
gas measured at 1.3 atm pressure and 298 K
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1