Answer:
The angles are missing in the question.
The angles are :
45, 30, 60, 90, -34, -56, 20, -42, -65, -15
P=10, P=5, P=25, P=54, P=65, P=95, P=250, P=8, P=35, P=150
Explanation:
1. P = 10, θ = 45° rectangular coordinates
x = r cosθ , y = r sinθ
So, rectangular form is x + iy
x = P cosθ = 10 cos 45°
= 7.07
y =P sinθ = 10 sin 45°
= 7.07
Therefore, rectangular form
x + iy = 7.07 + i (7.07)
2. P = 5 , θ = 30°
x = 5 cos 30° = 4.33
y = 5 sin 30° = 2.5
So, (x+iy) = 4.33 + i (2.5)
3. P = 25 , θ = 60°
x = 25 cos 60° = 12.5
y = 25 sin 60° = 21.65
So, (x+iy) = 12.5 + i (21.65)
4. P = 54 , θ = 90°
x = 54 cos 90° = 0
y = 54 sin 90° = 54
So, (x+iy) = 0+ i (54)
5. P = 65 , θ = -34°
x = 65 cos (-34°) = 53.88
y = 65 sin (-34°) = -36.34
So, (x+iy) = 53.88 - i (36.34)
6. P = 95 , θ = -56°
x = 95 cos (-56)° = 53.12
y = 95 sin (-56)° = -78.75
So, (x+iy) = 53.12 - i (78.75)
7. P = 250 , θ = 20°
x = 250 cos 20° = 234.92
y = 250 sin 20° = 85.5
So, (x+iy) = 234.92 + i (85.5)
8. P = 8 , θ = (-42)°
x = 8 cos (-42)° = 5.94
y = 8 sin (-42)° = -5.353
So, (x+iy) = 5.94 - i (5.353)
9. P = 35 , θ = (-65)°
x = 35 cos (-65)° = 14.79
y = 35 sin (-65)° = -31.72
So, (x+iy) = 14.79 - i (31.72)
10. P = 150 , θ = (-15)°
x = 150 cos (-15)° = 144.88
y = 150 sin (-15)° = -38.82
So, (x+iy) = 144.88 - i (38.82)