1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sammy [17]
3 years ago
14

How is air pressure affected by the shape of an aircraft wing

Engineering
1 answer:
oksano4ka [1.4K]3 years ago
3 0

Answer:

Airplanes' wings are curved on top and flatter on the bottom. That shape makes air flow over the top faster than under the bottom. As a result, less air pressure is on top of the wing. This lower pressure makes the wing, and the airplane it's attached to, move up.

Explanation:

You might be interested in
Write a method printShampooInstructions(), with int parameter numCycles, and void return type. If numCycles is less than 1, prin
kirill [66]

Answer:

// The method is defined with a void return type

// It takes a parameter of integer called numCycles

// It is declared static so that it can be called from a static method

public static void printShampooInstructions(int numCycles){

// if numCycles is less than 1, it display "Too few"

   if (numCycles < 1){

       System.out.println("Too few.");

   }

// else if numCycles is less than 1, it display "Too many"

    else if (numCycles > 4){

       System.out.println("Too many.");

   }

// else it uses for loop to print the number of times to display

// Lather and rinse

  else {

       for(int i = 1; i <= numCycles; i++){

           System.out.println(i + ": Lather and rinse.");

       }

       System.out.println("Done");

       

   }

}

Explanation:

The code snippet is written in Java. The method is declared static so that it can be called from another static method. It has a return type of void. It takes an integer as parameter.

It display "Too few" if the passed integer is less than 1. Or it display "Too much" if the passed integer is more than 4. Else it uses for loop to display "Lather and rinse" based on the passed integer.

8 0
3 years ago
What is differences Between hard shoulder &amp; soft shoulder in civil Engineerin?
r-ruslan [8.4K]

Answer:

<em><u>The 'shoulder' of a road is the land to the edge of the road. On most roads without pavements, the shoulder is a strip of grass or a hedgerow. This is known as a 'soft shoulder'. On a motorway, this strip of land is hardstanding, hence the name 'hard shoulder.'</u></em>

<em><u>Mark</u></em><em><u> </u></em><em><u>as</u></em><em><u> brilliant</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u> </u></em>

5 0
3 years ago
Find the time-domain sinusoid for the following phasors:_________
sattari [20]

<u>Answer</u>:

a.  r(t) = 6.40 cos (ωt + 38.66°) units

b.  r(t) = 6.40 cos (ωt - 38.66°) units

c.  r(t) = 6.40 cos (ωt - 38.66°) units

d.  r(t) = 6.40 cos (ωt + 38.66°) units

<u>Explanation</u>:

To find the time-domain sinusoid for a phasor, given as a + bj, we follow the following steps:

(i) Convert the phasor to polar form. The polar form is written as;

r∠Ф

Where;

r = magnitude of the phasor = \sqrt{a^2 + b^2}

Ф = direction = tan⁻¹ (\frac{b}{a})

(ii) Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid (r(t)) as follows:

r(t) = r cos (ωt + Φ)

Where;

ω = angular frequency of the sinusoid

Φ = phase angle of the sinusoid

(a) 5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

5 + j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

(b) 5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

5 - j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(c) -5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{-5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

-5 + j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(d) -5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{-5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

-5 - j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

3 0
3 years ago
A large plate is fabricated from a steel alloy that has a plane strain fracture toughness of 55 MPa √m (50 ksi √in.). If, during
astra-53 [7]

Answer:

0.024 m = 24.07 mm

Explanation:

1) Notation

\sigma_c = tensile stress = 200 Mpa

K = plane strain fracture toughness= 55 Mpa\sqrt{m}

\lambda= length of a surface crack (Variable of interest)

2) Definition and Formulas

The Tensile strength is the ability of a material to withstand a pulling force. It is customarily measured in units (F/A), like the pressure. Is an important concept in engineering, especially in the fields of materials and structural engineering.

By definition we have the following formula for the tensile stress:

\sigma_c=\frac{K}{Y\sqrt{\pi\lambda}}   (1)

We are interested on the minimum length of a surface that will lead to a fracture, so we need to solve for \lambda

Multiplying both sides of equation (1) by Y\sqrt{\pi\lambda}

\sigma_c Y\sqrt{\pi\lambda}=K   (2)

Sequaring both sides of equation (2):

(\sigma_c Y\sqrt{\pi\lambda})^2=(K)^2  

\sigma^2_c Y^2 \pi\lambda=K^2   (3)

Dividing both sides by \sigma^2_c Y^2 \pi we got:

\lambda=\frac{1}{\pi}[\frac{K}{Y\sigma_c}]^2   (4)

Replacing the values into equation (4) we got:

\lambda=\frac{1}{\pi}[\frac{55 Mpa\sqrt{m}}{1.0(200Mpa)}]^2 =0.02407m

3) Final solution

So the minimum length of a surface crack that will lead to fracture, would be 24.07 mm or more.

7 0
3 years ago
Can the MOXIE created by NASA be used on earth
Alisiya [41]

Answer:

MOXIE is designed to generate up to 10 grams of oxygen per hour. This technology demonstration was designed to ensure the instrument survived the launch from Earth, a nearly seven-month journey through deep space, and touchdown with Perseverance on Feb

4 0
3 years ago
Other questions:
  • A small truck is to be driven down a 4% grade at 70 mi/h. The coefficient of road adhesion is 0.95, and it is known that the bra
    7·1 answer
  • 1. Which type of fit implies that a piece will never fit? a. interference fit b. construction fit c. transition fit d. impeding
    8·1 answer
  • The amount of time an activity can be delayed and yet not delay the project is termed:_________
    14·1 answer
  • A torsion member has an elliptical cross section with major and minor dimensions of 50.0 mm and 30.0 mm, respectively. The yield
    10·1 answer
  • Give the approximate temperature at which creep deformation becomes an important consideration for each of the following metals:
    5·1 answer
  • What are the characteristic features of stress corrosion cracks?
    15·1 answer
  • What structure was created to help prevent shipwrecks?
    9·1 answer
  • A carbon resistor has a resistance of 976 ohms at 0 degrees C. Determine its resistance at 89 degrees C​
    6·1 answer
  • Which of these parts of a cell phone is least likely to be found on the phone's circult board?
    5·1 answer
  • A restaurant and dairy are participating in a community digester pilot program within the UMD Industrial Park. The following was
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!