Answer:
a)exit velocity of the steam, V2 = 2016.8 ft/s
b) the amount of entropy produced is 0.006 Btu/Ibm.R
Explanation:
Given:
P1 = 100 psi
V1 = 100 ft./sec
T1 = 500f
P2 = 40 psi
n = 95% = 0.95
a) for nozzle:
Let's apply steady gas equation.

h1 and h2 = inlet and exit enthalpy respectively.
At T1 = 500f and P1 = 100 psi,
h1 = 1278.8 Btu/Ibm
s1 = 1.708 Btu/Ibm.R
At P2 = 40psi and s1 = 1.708 Btu/Ibm.R
1193.5 Btu/Ibm
Let's find the actual h2 using the formula :
solving for h2, we have
Take Btu/Ibm = 25037 ft²/s²
Using the first equation, exit velocity of the steam =

Solving for V2, we have
V2 = 2016.8 ft/s
b) The amount of entropy produced in BTU/ lbm R will be calculated using :
Δs = s2 - s1
Where s1 = 1.708 Btu/Ibm.R
At h2 = 1197.77 Btu/Ibm and P2 =40 psi,
S2 = 1.714 Btu/Ibm.R
Therefore, amount of entropy produced will be:
Δs = 1.714Btu/Ibm.R - 1.708Btu/Ibm.R
= 0.006 Btu/Ibm.R
Answer:
Z = 29.938Ω ∠22.04°
I = 2.494A
Explanation:
Impedance Z is defined as the total opposition to the flow of current in an AC circuit. In an R-L-C AC circuit, Impedance is expressed as shown:
Z² = R²+(Xl-Xc)²
Z = √R²+(Xl-Xc)²
R is the resistance = 4Ω
Xl is the inductive reactance = ωL
Xc is the capacitive reactance =
1/ωc
Given C = 12 μF, L = 6 mH and ω = 2000 rad/sec
Xl = 2000×6×10^-3
Xl = 12Ω
Xc = 1/2000×12×10^-6
Xc = 1/24000×10^-6
Xc = 1/0.024
Xc = 41.67Ω
Z = √4²+(12-41.67)²
Z = √16+880.31
Z = √896.31
Z = 29.938Ω (to 3dp)
θ = tan^-1(Xl-Xc)/R
θ = tan^-1(12-41.67)/12
θ = tan^-1(-29.67)/12
θ = tan^-1 -2.47
θ = -67.96°
θ = 90-67.96
θ = 22.04° (to 2dp)
To determine the current, we will use the relationship
V = IZ
I =V/Z
Given V = 12V
I = 29.93/12
I = 2.494A (3dp)
Explanation:
These are probably the most used tool in any Plumber’s tool box. Pliers are not just another tool for a Plumber, they become an extension of their arms. Most people think that sounds odd, but pliers are more than just a tool to grab or turn things.
These are probably the most used tool in any Plumber’s tool box. Pliers are not just another tool for a Plumber, they become an extension of their arms. Most people think that sounds odd, but pliers are more than just a tool to grab or turn things.Sometimes a piece of copper pipe won’t quite go into a fitting. By using the handle end as a mallet you can gently force it in without damaging/denting the pipe or fittings. Or, when a brute force is needed the jaw end becomes a hammer. On an old pair of pliers I took a grinder to form one side of the handle into a flathead screwdriver/pry bar.
Aerospace engineers design, analyze, model, simulate, and test aircraft, spacecraft, satellites, missiles, and rockets. Aerospace technology also extends to many other applications of objects moving within gases or liquids. Examples are golf balls, high-speed trains, hydrofoil ships, or tall buildings in the wind. As an aerospace engineer, you might work on the Orion space mission, which plans on putting astronauts on mars by 2020. Or, you might be involved in developing a new generation of space telescopes, the source of some of our most significant cosmological discoveries. But outer space is just one of many realms to explore as an aerospace engineer. You might develop commercial airliners, military jets, or helicopters for our airways. And getting even more down-to-earth, you could design the latest ground and sea transportation, including high-speed trains, racing cars, or deep-sea vessels that explore life at the bottom of the ocean.