This question is incomplete, the complete question is;
Calculate the value of ni for gallium arsenide (GaAs) at T = 300 K.
The constant B = 3.56×10¹⁴ (cm⁻³ K^-3/2) and the bandgap voltage E = 1.42eV.
Answer: the value of ni for gallium arsenide (GaAs) is 2.1837 × 10⁶ cm⁻³
Explanation:
Given that;
T = 300k
B = 3.56×10¹⁴ (cm⁻³ K^-3/2)
Eg = 1.42 eV
we know that, the value of Boltzmann constant k = 8.617×10⁻⁵ eV/K
so to find the ni for gallium arsenide;
ni = B×T^(3/2) e^ ( -Eg/2kT)
we substitute
ni = (3.56×10¹⁴)(300^3/2) e^ ( -1.42 / (2× 8.617×10⁻⁵ 300))
ni = (3.56×10¹⁴)(5196.1524)e^-27.4651
ni = (3.56×10¹⁴)(5196.1524)(1.1805×10⁻¹²)
ni = 2.1837 × 10⁶ cm⁻³
Therefore the value of ni for gallium arsenide (GaAs) is 2.1837 × 10⁶ cm⁻³
Answer:
ddition, please state if transportation engineers are involved with any other ... Please specify their specific roles and contributions in the execution of the ...
The expression of V(m³)=e^(t(s)) to make V in in³ and t in minutes is;
V(in³) = (¹/₆₁₀₂₄)a
We are given that;
Volume of microbial culture is observed to increase according to the formula;
V = e^(t)
where;
t is in seconds
V is in m³
We want to now express V in in³ and t in minutes.
Now, from conversions;
1 m³ = 61024 in³
Also; 1 second = 1/60 minutes
according to formula for exponential decay, we know that;
V = ae^(bt)
Thus, we have;
61024V = ae^(¹/₆₀b(t(h))
V(in³) = (¹/₆₁₀₂₄)a
Read more about subject of formula at; brainly.com/question/790938
Answer:
The operating principle of a ramp type digital voltmeter is to measure the time that a linear ramp voltage takes to change from level of input voltage to zero voltage (or vice versa).
Why did you put this on here when you know the answer lol