1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Schach [20]
3 years ago
8

Tensile Strength (MPa) Number-Average Molecular Weight (g/mol)

Engineering
1 answer:
IceJOKER [234]3 years ago
5 0

Answer:

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

\mathbf{M_n = 49163.56431  \ g/mol }

Explanation:

The question can be well structured in a table format as illustrated below:

Tensile Strength (MPa)            Number- Average Molecular Weight  (g/mol)

82                                                  12,700

156                                                 28,500

The tensile strength and number-average molecular weight for two polyethylene materials given above.

Estimate the number-average molecular weight that is required to give a tensile strength required above. Using the data given find TS (infinity) in MPa.

<u>SOLUTION:</u>

We know that :

T_S = T_{S \infty} - \dfrac{A}{M_n}

where;

T_S = Tensile Strength

T_{S \infty} = Tensile Strength (Infinity)

M_n = Number- Average Molecular Weight  (g/mol)

SO;

82= T_{S \infty} - \dfrac{A}{12700} ---- (1)

156= T_{S \infty} - \dfrac{A}{28500} ---- (2)

From equation (1) ; collecting the like terms; we have :

T_{S \infty} =82+ \dfrac{A}{12700}

From equation (2) ; we have:

T_{S \infty} =156+ \dfrac{A}{28500}

So; T_{S \infty} = T_{S \infty}

Then;

T_{S \infty} =82+ \dfrac{A}{12700} =156+ \dfrac{A}{28500}

Solving by L.C.M

\dfrac{82(12700) + A}{12700} =\dfrac{156(28500) + A}{28500}

\dfrac{1041400 + A}{12700} =\dfrac{4446000 + A}{28500}

By cross multiplying ; we have:

({4446000 + A})*  {12700} ={28500} *({1041400 + A})

(5.64642*10^{10} + 12700A) =(2.96799*10^{10}+ 28500A)

Collecting like terms ; we have

(5.64642*10^{10} - 2.96799*10^{10} ) =( 28500A- 12700A)

2.67843*10^{10}  = 15800 \ A

Dividing both sides by 15800:

\dfrac{ 2.67843*10^{10} }{15800} =\dfrac{15800 \ A}{15800}

A = 1695208.861

From equation (1);

82= T_{S \infty} - \dfrac{A}{12700} ---- (1)

Replacing A = 1695208.861 in the above equation; we have:

82= T_{S \infty} - \dfrac{1695208.861}{12700}

T_{S \infty}= 82 + \dfrac{1695208.861}{12700}

T_{S \infty}= \dfrac{82(12700) +1695208.861 }{12700}

T_{S \infty}= \dfrac{1041400 +1695208.861 }{12700}

T_{S \infty}= \dfrac{2736608.861 }{12700}

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

From equation(2);

156= T_{S \infty} - \dfrac{A}{28500} ---- (2)

Replacing A = 1695208.861 in the above equation; we have:

156= T_{S \infty} - \dfrac{1695208.861}{28500}

T_{S \infty}= 156 + \dfrac{1695208.861}{28500}

T_{S \infty}= \dfrac{156(28500) +1695208.861 }{28500}

T_{S \infty}= \dfrac{4446000 +1695208.861 }{28500}

T_{S \infty}= \dfrac{6141208.861}{28500}

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

We are to also estimate the number- average molecular weight that is required to give a tensile strength required above.

If the Tensile Strength (MPa) is 82 MPa

Definitely the average molecular weight will be = 12,700 g/mol

If the Tensile Strength (MPa) is 156 MPa

Definitely the average molecular weight will be = 28,500 g/mol

But;

Let us assume that the Tensile Strength (MPa) = 181 MPa for example.

Using the same formula:

T_S = T_{S \infty} - \dfrac{A}{M_n}

Then:

181 = 215.481- \dfrac{1695208.861 }{M_n}

Collecting like terms ; we have:

\dfrac{1695208.861 }{M_n} = 215.481-  181

\dfrac{1695208.861 }{M_n} =34.481

1695208.861= 34.481 M_n

Dividing both sides by 34.481; we have:

M_n = \dfrac{1695208.861}{34.481}

\mathbf{M_n = 49163.56431  \ g/mol }

You might be interested in
When passing another vehicle, when is it acceptable to drive over the
miss Akunina [59]

Answer:

Under no circumstances

Explanation:

I'm not 100% sure why, but I remember hearing that you're not suposed to go over the speed limit no matter what

7 0
3 years ago
Read 2 more answers
How to calculate tension.
Evgen [1.6K]

Answer:

Tension can be easily explained in the case of bodies hung from chain, cable, string

Explanation

uniform speed, tension; T = W.

T=m(g±a)

3 0
3 years ago
Why would the shear stress be considered as the momentum flux.
oksano4ka [1.4K]

Answer:

A fluid flowing along a flat plate will stick to it at the point of contact

Explanation:

and this is known as the no-slip condition. ... This is the precise reason why shear stress in a fluid can also be interpreted as the flux of momentum.

3 0
2 years ago
A conical enlargement in a vertical pipeline is 5 ft long and enlarges the pipe diameter from 12 in. to 24 in. diameter. Calcula
makkiz [27]

Answer:

F_y = 151319.01N = 15.132 KN

Explanation:

From the linear momentum equation theory, since flow is steady, the y components would be;

-V1•ρ1•V1•A1 + V2•ρ2•V2•A2 = P1•A1 - P2•A2 - F_y

We are given;

Length; L = 5ft = 1.52.

Initial diameter;d1 = 12in = 0.3m

Exit diameter; d2 = 24 in = 0.6m

Volume flow rate of water; Q2 = 10 ft³/s = 0.28 m³/s

Initial pressure;p1 = 30 psi = 206843 pa

Thus,

initial Area;A1 = π•d1²/4 = π•0.3²/4 = 0.07 m²

Exit area;A2 = π•d2²/4 = π•0.6²/4 = 0.28m²

Now, we know that volume flow rate of water is given by; Q = A•V

Thus,

At exit, Q2 = A2•V2

So, 0.28 = 0.28•V2

So,V2 = 1 m/s

When flow is incompressible, we often say that ;

Initial mass flow rate = exit mass flow rate.

Thus,

ρ1 = ρ2 = 1000 kg/m³

Density of water is 1000 kg/m³

And A1•V1 = A2•V2

So, V1 = A2•V2/A1

So, V1 = 0.28 x 1/0.07

V1 = 4 m/s

So, from initial equation of y components;

-V1•ρ1•V1•A1 + V2•ρ2•V2•A2 = P1•A1 - P2•A2 - F_y

Where F_y is vertical force of enlargement pressure and P2 = 0

Thus, making F_y the subject;

F_y = P1•A1 + V1•ρ1•V1•A1 - V2•ρ2•V2•A2

Plugging in the relevant values to get;

F_y = (206843 x 0.07) + (1² x 1000 x 0.07) - (4² x 1000 x 0.28)

F_y = 151319.01N = 15.132 KN

6 0
3 years ago
Ann’s Retail, a women’s clothing store, hires female attendants to assist clients in the store’s dressing rooms. Larry, a male,
mojhsa [17]

Answer:

A bona fide occupational qualification defense

Explanation:

Since the store is for women clothing, the retail may prefer to employ only female to assist the customers.  Under a bona fide occupational qualification defense, an employer is allowed to discriminate if a characteristic is a necessity for the performance of the job and for the business. Therefore, the store has a bona fide occupational qualification defense.

3 0
3 years ago
Other questions:
  • Which process is a from of mechanical weathering
    8·1 answer
  • . A constant current of 1 ampere is measured flowing into the positive reference terminal of a pair of leads whose voltage we’ll
    10·1 answer
  • 10. True or False: You should select your mechanic before you experience vehicle failure.
    6·2 answers
  • Where can you find free air pods that look real
    8·1 answer
  • The ________________ attraction between the Earth and the moon is ______________ on the side of the Earth that happens to be ___
    5·1 answer
  • 2. When performing an alignment, what action should be taken immediately after putting a vehicle on the rack?
    15·1 answer
  • What do you understand by the term phase angle?<br>​
    13·1 answer
  • Should i show my face?
    8·2 answers
  • The minimum recommended standards for the operating system, processor, primary memory (RAM), and storage capacity for certain so
    12·2 answers
  • Steam at 75 kPa and 8 percent quality is contained in a spring-loaded piston–cylinder device, as shown in Figure, with an initia
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!