Answer:
Entrepreneurship
Explanation:
Different phases of organizational life cycles can be observed depending on the stage of the company. These cycles are,
- Entrepreneurship
- Survival and Early Success
- Sustained Success
- Renewal (or Decline)
In the initial stage which is Entrepreneurship Phase, all of the founders take part in various activities, no formality is formed between founders and employees. Generally lots of ideas are present and company is actively searching to define correct market and products to focus on.
I would would like to learn #c for free tell me
Explanation:
Below is an attachment containing the solution.
Answer:
Explanation:
Small-angle grain boundaries are not as effective in interfering with the slip process as are high-angle grain boundaries because there is not as much crystallographic misalignment in the grain boundary region for small-angle, and therefore not as much change in slip direction.
Low angle grain boundaries (quasi-coherent) are formed by the dislocation network positioned along the geometric plane with small tilt angle differences between successive peers that is tilt boundary made up edge dislocations therefore it may only divert the slip direction of the incoming gliding dislocation with very little frictional stresses. And on the other hand, a high angle grain boundary region because of their disordered almost liquid like structure which acts as a strong barrier against dislocation slip motion and causes actually formation of dislocations file-up against it by arresting their motion unless that the stress concentration at the leading dislocation becomes high enough to go though the barrier.
Answer:
The answer is below
Explanation:
Let A represent the first switch, B represent the second switch and C represent the bulb. Also, let 0 mean turned off and 1 mean turned on. Since when both switches are in the same position, the light is off. This can be represented by the following truth table:
A B C (output)
0 0 0
0 1 1
1 0 1
1 1 0
The logic circuit can be represented by:
C = A'B + AB'
The output (bulb) is on if the switches are at different positions; if the switches are at the same position, the output (bulb) is off. This is an XOR gate. The gate is represented in the diagram attached below.