Answer:
10.8s
Explanation:
Given parameters:
Force on the car = 3250N
Distance = 35m
Power = 11375W
Unknown:
Time taken = ?
Solution:
To solve this problem;
Power is the rate at which work is done
Power =
Work done = force x distance = 3250 x 35 = 123200J
Now;
11375 =
11375t = 123200
t = 10.8s
To solve this problem we will apply the normal distribution, with which we will obtain the probability that the given event will occur. Concepts such as the mean and standard deviation will be present throughout the solution of the problem. Increasing or decreasing the average would change the location or center point of the curve. The change in the standard deviation would lead to the change in the dispersion of the data. As the standard deviation increases, the curve would become flatter.
Let X be the output voltage of power supply
X∼N 
A
The lower and upper specifications for voltage are 4.95 V and 5.05 V, respectively





Hence probability that a power supply selected at random will conform to the specifications on voltage is 0.9876
In rainforest sound travels faster because in the ocean sound travels very slow due to the pressure
The only information you would need to decide if the can will float is the density of the can, which requires knowing the mass and volume. If the density of the can is less than one, the can will float. if it is greater than one, it will not float, as water's density is one.