The answer is A for number 1 and D for 2
, a crystal structure with a short symmetrical hydrogen bond.
<h3>What is Classical bonding?</h3>
Classical models of the chemical bond. By classical, we mean models that do not take into account the quantum behaviour of small particles, notably the electron. These models generally assume that electrons and ions behave as point charges which attract and repel according to the laws of electrostatics.
Sodium dihydrogen phosphate is a derivative composed of glycerol derivatives formed by reacting mono and diglycerides that are derived from edible sources with phosphorus pentoxide followed by neutralization with sodium carbonate.
Bonding in 
, a crystal structure with a short symmetrical hydrogen bond. Sodium dihydrogen phosphate (
) is monoclinic, space group P2,/c, with a= 6.808 (2), b= 13.491 (3), c=7.331 (2)/~, fl=92.88 (3) ; Z=8.
Learn more about the bond here:
brainly.com/question/10777799
#SPJ1
<u>Answer:</u> The products of the given chemical equation are 
<u>Explanation:</u>
Protonation equation is defined as the equation in which protons get added in the substance.
The chemical equation for the protonation of carbonate ion in the presence of water follows:

By Stoichiometry of the reaction:
1 mole of carbonate ion reacts with 1 mole of water to produce 1 mole of hydrogen carbonate ion and 1 mole of hydroxide ion
Hence, the products of the given chemical equation are 
Answer:
Concentration of unknown solution is 0.0416 M
Explanation:
As we know
Absorbance is equal to the product of molar absorptivity of KMnO4 m, path length and concentration
From the given set of graphical data, it is clear that the absorbance vs concentration is a straight line.
From the graph, we can obtain-
Y = 5.73 X – 0.0065
Absorbance = 0.232
0.232 = 5.73 X – 0.0065
X = 0.0416
Concentration of unknown solution is 0.0416 M
Answer:
212°F , 100°C , 373.15°K
They are all the same, in different units.