Answer:
All of the above.
Explanation:
All of these steps are useful towards getting a job.
According to motion in straight line t1≠t2
A biker travels d1 meters in t1 seconds at v1 m/s for the first leg and d2 meters in t2 seconds at v2 m/s for the second leg. It's possible that t1t2 if his average speed is equal to the average of v1 and v2.
An object is said to be in motion if its position in relation to its surroundings changes over time. It is a shift in an object's position over time. The only type of motion that exists is motion in a straight line.
A reference system is constantly used to describe a particle's motion. An arbitrary origin point is used to create a reference system, and a coordinate system is imagined to be connected to it. The reference system for a specific problem is the coordinate system that has been selected for it. For the majority of the problems, we typically select an earth-based coordinate system as the reference system.
To learn more about Motion in straight lines please visit -brainly.com/question/17675825
#SPJ1
Well I know that ernest rutherford did the gold foil experiment where he fired alpha particles at gold foil. This experiment founded the nucleus but I don't know if the current model of the atom is based on this.
Cathode ray tube experiments sounds like its to do with electrolysis so i dont think it can be that.
Explanation:
The pressure exerted by a column of liquid of height h and density ρ is given by the hydrostatic pressure equation p = ρgh, where g is the gravitational acceleration
<span>when it returns to its original level after encountering air resistance, its kinetic energy is
decreased.
In fact, part of the energy has been dissipated due to the air resistance.
The mechanical energy of the ball as it starts the motion is:
</span>

<span>where K is the kinetic energy, and where there is no potential energy since we use the initial height of the ball as reference level.
If there is no air resistance, this total energy is conserved, therefore when the ball returns to its original height, the kinetic energy will still be 100 J. However, because of the presence of the air resistance, the total mechanical energy is not conserved, and part of the total energy of the ball has been dissipated through the air. Therefore, when the ball returns to its original level, the kinetic energy will be less than 100 J.</span>