Answer:
The rate determining step is step 1
Explanation:
Color change, temperature change, bubbling, state change
green to blue, hot to cold, bubbles (lol), and liquid to gas
Answer:
E°(Ag⁺/Fe°) = 0.836 volt
Explanation:
3Ag⁺ + 3e⁻ => Ag°; E° = +0.800 volt
Fe° => Fe⁺³ + 3e⁻ ; E° = -0.036 volt
_________________________________
Fe°(s) + 3Ag⁺(aq) => Fe⁺³(aq) + 3Ag°(s) ...
E°(Ag⁺/Fe°) = E°(Ag⁺) - E°(Fe°) = 0.800v - ( -0.036v) = 0.836 volt
Density can be calculated using the following rule:
density=mass/volume
therefore,
volume=mass/density
we have mass=0.451g and density=0.824g/ml
substituting in the above equation, we can calculate the volume as follows:
volume = 0.451/0.824 = 0.547 ml
Answer:
[Cl⁻] = 0.016M
Explanation:
First of all, we determine the reaction:
Pb(NO₃)₂ (aq) + MgCl₂ (aq) → PbCl₂ (s) ↓ + Mg(NO₃)₂(aq)
This is a solubility equilibrium, where you have a precipitate formed, lead(II) chloride. This salt can be dissociated as:
PbCl₂(s) ⇄ Pb²⁺ (aq) + 2Cl⁻ (aq) Kps
Initial x
React s
Eq x - s s 2s
As this is an equilibrium, the Kps works as the constant (Solubility product):
Kps = s . (2s)²
Kps = 4s³ = 1.7ₓ10⁻⁵
4s³ = 1.7ₓ10⁻⁵
s = ∛(1.7ₓ10⁻⁵ . 1/4)
s = 0.016 M