Answer:
3.18 L
Explanation:
Step 1: Given data
- Initial pressure (P₁): 0.985 atm
- Initial volume (V₁): 3.65 L
- Final pressure (P₂): 861.0 mmHg
Step 2: Convert P₁ to mmHg
We will use the conversion factor 1 atm = 760 mmHg.
0.985 atm × 760 mmHg/1 atm = 749 mmHg
Step 3: Calculate the final volume of the gas
Assuming ideal behavior and constant temperature, we can calculate the final volume using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁/P₂
V₂ = 749 mmHg × 3.65 L/861.0 mmHg = 3.18 L
Do you know the difference between an extensive property verses an intensive property?
I think it's easiest to find the pOH from the given [OH-] first.
-log(1x10^-5)
pOH=5
Then find the pH.
pOH+pH=14
5+pH=14
pH=9
Then find the [H+] using the pH.
antilog(-9) (if you dont have an antilog button use 10^-9)
[H+]=1x10^-9