A 500 g ball swings in a vertical circle at the end of a 1.4-m-long string. when the ball is at the bottom of the circle, the tension in the string is 18 n.
Answer:
initial magnitude will be 9 N and direction will be to the right
Explanation:
force= 9N
mass m= 330 grams
acceleartion = a
from newtons 2nd law of motion we write

dP is the chage in momentum dt is time taken and F is the Force applied

this shows that the rate of change of momentum is 9 N
we also know that F= ma
putting values we get

a= 27.27 m/sec^2
The direction of acceleration will along the direction of force applied. So will be the direction of change momentum as in F=ma, mass is the scalar quantity and direction of force dictates the direction of motion. Hence, initial magnitude will be 9N and direction will be to the right
The atomic number gives you the number of protons element x has. Since the mass of protons and neutrons are almost similar(around 1 amu), the mass number can be thought of as the sum of protons and neutrons. so if element x whose atomic number is 40 has a mass number of 82, then we know that 42 of those must be neutrons.
Answer: Option <em>a.</em>
Explanation:
Kepler's 2nd law of planetary motion states:
<em>A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.</em>
It tells us that it doesn't matter how far Earth is from the Sun, at equal times, the area swept out by Earth's orbit it's always the same independently from the position in the orbit.
Answer:
Effective half-time of the tracer is 3.6 days
Explanation:
The formula for calculating the decay due to excretion for the first process is ;

here ;
= initial number of tracers
Then to the second process ; we have :

The total decay is as a result of the overall process occurring ; we have :
------ (1)
here ;

Putting the values in (1);we have :


As we also know that:
![\frac{1}{t_{1/2}} = \frac{[t_{1/2}]_{radiation}+[t_{1/2}]_{excretion}}{[t_{1/2}]_{radiation}*[t_{1/2}]_{excretion}}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bt_%7B1%2F2%7D%7D%20%3D%20%5Cfrac%7B%5Bt_%7B1%2F2%7D%5D_%7Bradiation%7D%2B%5Bt_%7B1%2F2%7D%5D_%7Bexcretion%7D%7D%7B%5Bt_%7B1%2F2%7D%5D_%7Bradiation%7D%2A%5Bt_%7B1%2F2%7D%5D_%7Bexcretion%7D%7D)
![\frac{1}{t_{1/2}}_{effective}} = \frac{[t_{1/2}]_{radiation}+[t_{1/2}]_{excretion}}{[t_{1/2}]_{radiation}*[t_{1/2}]_{excretion}}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bt_%7B1%2F2%7D%7D_%7Beffective%7D%7D%20%3D%20%5Cfrac%7B%5Bt_%7B1%2F2%7D%5D_%7Bradiation%7D%2B%5Bt_%7B1%2F2%7D%5D_%7Bexcretion%7D%7D%7B%5Bt_%7B1%2F2%7D%5D_%7Bradiation%7D%2A%5Bt_%7B1%2F2%7D%5D_%7Bexcretion%7D%7D)



= 3.6 days