Answer:
1800J
Explanation:
Given parameters:
Weight of the book = 20N
Total distance covered = 45m + 15m + 30m = 90m
Unknown:
Total work performed on the books = ?
Solution:
To solve this problem we must understand that work done is the force applied to move a body through a certain distance.
So;
Work done = Force x distance
Work done = 20 x 90 = 1800J
Answer: C and D
The equipment would have stayed in the same exact location indefinitely until the very moment the astronaut applied force to it.
The equipment will continue moving in the same direction indefinitely unless another force is applied to stop it.
Explanation: According to Newton's first law of motion which state that; A body at rest will continue to be at rest, or in linear motion will continue to move in a straight line, unless an external force act on it.
The equipment would have stayed in the same exact location indefinitely until the very moment the astronaut applied force to it.
immediately the astronaut apply force to the object by pushing in, Newton's first law will be manifested in which the equipment will continue moving in the same direction indefinitely unless another force is applied to stop it.
Hope this helps
Ps- U can pick between these two pictures
Please mark as brainliest
Answer:
α = 3×10^-5 K^-1
Explanation:
let ΔL be the change in length of the bar of metal, ΔT be the change in temperature, L be the original length of the metal bar and let α be the coefficient of linear expansion.
then, the coefficient of linear expansion is given by:
α = ΔL/(ΔT×L)
= (0.3×10^-3)/(100)(100×10^-3)
= 3×10^-5 K^-1
Therefore, the coefficient of linear expansion is 3×10^-5 K^-1
Answer:
False
Explanation:
The steel ball and the wooden ball do not have the same force acting on them because their masses are different. But, they have the same acceleration which is the acceleration due to gravity g = 9.8 m/s².
Using the equation of motion under freefall, s = ut +1/2gt². Since u = 0,
s = 1/2gt² ⇒ t = √(2s/g)
Since. s = height is the same for both objects, they land at the same time neglecting air resistance.