Answer:
I can't see it good on my phone sorry can't help you
Answer: they are high in all except fiber
Answer:
The normal force the seat exerted on the driver is 125 N.
Explanation:
Given;
mass of the car, m = 2000 kg
speed of the car, u = 100 km/h = 27.78 m/s
radius of curvature of the hill, r = 100 m
mass of the driver, = 60 kg
The centripetal force of the driver at top of the hill is given as;

where;
Fc is the centripetal force
is downward force due to weight of the driver
is upward or normal force on the drive

Therefore, the normal force the seat exerted on the driver is 125 N.
Answer:
h> 2R
Explanation:
For this exercise let's use the conservation of energy relations
starting point. Before releasing the ball
Em₀ = U = m g h
Final point. In the highest part of the loop
Em_f = K + U = ½ m v² + ½ I w² + m g (2R)
where R is the radius of the curl, we are considering the ball as a point body.
I = m R²
v = w R
we substitute
Em_f = ½ m v² + ½ m R² (v/R) ² + 2 m g R
em_f = m v² + 2 m g R
Energy is conserved
Emo = Em_f
mgh = m v² + 2m g R
h = v² / g + 2R
The lowest velocity that the ball can have at the top of the loop is v> 0
h> 2R