I believe the correct gravity on the moon is 1/6 of Earth.
Take note there is a difference between 1 6 and 1/6.
HOWEVER, we should realize that the trick here is that the
question asks about the MASS of the astronaut and not his weight. Mass is an
inherent property of an object, it is unaffected by external factors such as
gravity. What will change as the astronaut moves from Earth to the moon is his
weight, which has the formula: weight = mass times gravity.
<span>Therefore if he has a mass of 50 kg on Earth, then he will
also have a mass of 50 kg on moon.</span>
Is there any numbers to your question?
Keep in mind, the energy is conserved in a pendulum.
Here’s more information:
https://blogs.bu.edu/ggarber/interlace/pendulum/energy-in-a-pendulum/
To solve this problem it is necessary to apply the rules and concepts related to logarithmic operations.
From the definition of logarithm we know that,

In this way for the given example we have that a logarithm with base 10 expressed in the problem can be represented as,

We can express this also as,

By properties of the logarithms we know that the logarithm of a power of a number is equal to the product between the exponent of the power and the logarithm of the number.
So this can be expressed as

Since the definition of the base logarithm 10 of 10 is equal to 1 then

The value of the given logarithm is equal to 6
Answer:
The formula that links energy and power is: Energy = Power x Time. The unit of energy is the joule, the unit of power is the watt, and the unit of time is the second.
Explanation:
The graph between the strength of the magnet(number of paper clips picked) and battery is approximately a straight line.
For 25 coil, with increase of 1.5 V battery voltage, the electromagnet picks about 5 more clips. So, for a 7.5 V battery, it would pick about 30 paper clips.
For 50 coil, with increase of 1.5 V battery voltage, the electromagnet picks about 15 more clips. So, for a 7.5 V battery, it would pick about 30 paper clips.