Answer:
o
Explanation:
the increase energy stored in thw system is proportional to the decrease in kinetic energy
Answer:
v = -v₀ / 2
Explanation:
For this exercise let's use kinematics relations.
Let's use the initial conditions to find the acceleration of the electron
v² = v₀² - 2a y
when the initial velocity is vo it reaches just the negative plate so v = 0
a = v₀² / 2y
now they tell us that the initial velocity is half
v’² = v₀’² - 2 a y’
v₀ ’= v₀ / 2
at the point where turn v = 0
0 = v₀² /4 - 2 a y '
v₀² /4 = 2 (v₀² / 2y) y’
y = 4 y'
y ’= y / 4
We can see that when the velocity is half, advance only ¼ of the distance between the plates, now let's calculate the velocity if it leaves this position with zero velocity.
v² = v₀² -2a y’
v² = 0 - 2 (v₀² / 2y) y / 4
v² = -v₀² / 4
v = -v₀ / 2
We can see that as the system has no friction, the arrival speed is the same as the exit speed, but with the opposite direction.
"<span>The image would be upside down, would look as tall as you, and would be at the same distance from the mirror as you are" is the type of image among the choices given in the question that would be projected. The correct option among all the options that are given in the question is the first option. I hope it helps you.</span>
Answer:
f = 1 m
Explanation:
The magnification of the lens is given by the formula:

where,
M = Magnification = 4
q = image distance = 5 m
p = object distance = ?
Therefore,

Now using thin lens formula:

<u>f = 1 m</u>