Answer:
built a special cavity where the electromagnetic quantum states resonate with the natural vibrations of the atoms. In doing so, one cancouple a photon-based oscillator to a mechanical oscillator, controlling the mechanical quantum states with visible light. The result is a prototype of a quantum transducer, a device that converts light energy into mechanical energy (sound energy)
Explanation:
Sound energy is created by vibrating particles of medium that propagates as a wave. So in order to convert light (electromagnetic wave) to sound wave it has to be converted into electric or magnetic signals. Then these signals can be converted into sound waves.
However, if you consider the particle nature of light. It contains momentum and after collision sets the other particles into oscillatory motion but the wavelength of these vibrations is too high to be considered as sound waves.
CH₄(g) + 3 Cl₂(g) → CHCl₃(g) + 3 HCl(g)
From the equation we notice that 1 mole of methane produces 1 mole of chloroform:
16 g Methane → 119.38 g Chloroform
? g Methane → 37.5 g Chloroform
by cross multiplication:
= (16 * 37.5) / 119.38 = 5.0 g methane
False. elements in the same period have the same number of shells while elements in the same group have the same number of valence electrons.
This is a problem involving heat transfer through radiation. The solution to this problem would be to use the formula for heat flux.
ΔQ/Δt = (1000 W/m²)∈Acosθ
A is the total surface area:
A = (1 m²) + 4(1.8 cm)(1m/100 cm)(√(1 m²))
A = 1.072 m²
ΔQ is the heat of melting ice.
ΔQ = mΔHfus
Let's find its mass knowing that the density of ice is 916.7 kg/m³.
ΔQ = (916.7 kg/m³)(1 m²)(1.8 cm)(1m/100 cm)(<span>333,550 J/kg)
</span>ΔQ = 5,503,780 J
5,503,780 J/Δt = (1000 W/m²)(0.05)(1.072 m²)(cos 33°)
<em>Δt = 122,434.691 s or 34 hours</em>