Answer:
Melamine is used for making tableware,cooking utensils, plates, plastic products etc.
Explanation:
Melamine is used to manufacture many products. How? Well melamine-formaldehyde resin, as it's full name, forms molecular structures that are molded, with heat, to take the shape of the items such as tableware.
After this chemical reaction takes place, the "left over" remains as plastic.
_________________________________________________
And so, it is used in products such as cooking utensils, plates, plastic products etc.
Hertz is units for frequency. (waves per second)
wavelength = speed/frequency
if you're given the speed use that to calculate, if not then you can probably assume it's a wave of light and use the speed of light (3x10^8 m/s) to calculate.
wavelength = (3x10^8)/(1.28x10^17)
= 0.000000002 m
= 2.34 nm
Answer:
Like most other metals, Gallium is solid at room temperature (or liquid if it is too hot in your room). But, if it is held [in hands] for long enough, it melts in your hands, and doesn't poison you like Mercury would. This is because of its unusually low melting point of (~29 degree Centigrade).
- It melts once it reaches its melting point.
:)
Answer ; The correct answer is : 346 m/s .
Sound is a type of longitudinal wave , which is produced when a matter compress or refracts .
Speed of sounds depends on factors like medium , density , temperature etc .
Effect of Temperature on speed of sounds :
When the temperature increases , molecules gains energy and they starts vibrating and with higher temperature vibration becomes fast . So the waves of sounds can travel faster due to faster vibrations . Hence , speed of sounds is directly proportional to the temperature or speed of sounds increases with increase in temperature .
The speed of sounds at 0⁰C is 331 
The relation between speed of sound and temperature is given as :

Given : Temperature = 25 ⁰ C
Plugging values in formula =>



The balanced chemical reaction is written as:
<span>3NO2 + H2O = 2HNO3 + NO
Assuming that the gases in this reaction are ideal gas, then we can use the conversion from L to moles which is 1 mol of ideal gas is equal to 22.4 L. We calculate as follows:
538 L NO2 ( 1 mol / 22.4L ) ( 1 mol NO / 3 mol NO2 ) ( 22.4 L / 1 mol ) = 179.33 L NO is produced</span>