Answer:
EAST is the answer
Explanation:
For the moment, let us just think about one motion - - Earth's spin (or rotation) on its axis. Earth rotates or spins toward the east, and that's why the Sun, Moon, planets, and stars all rise in the east and make their way westward across the sky.
Answer:
<em><u>Rows in the periodic table are called periods</u></em>. As one moves from left to right in a given period, the chemical properties of the elements slowly change. <em><u>Columns in the periodic table are called groups</u></em>. Elements in a given group in the periodic table share many similar chemical and physical properties
Explanation:
Answer:
Explanation has been given below.
Explanation:
- Chloroform has three polar C-Cl bonds. Methylene chloride has two polar C-Cl bonds. So it is expected that chloroform should be more polar and posses higher dipole moment than methylene chloride.
- Two factors are liable for the opposite trend observed in dipole moments of methylene chloride and chloroform.
- First one is the number of hyperconjugative hydrogen atoms present in a molecule. Hyperconjugation occurs with vacant d-orbital of Cl atom. Hyperconjugation amplifies charge separation in a molecule resulting higher dipole moment.
- Methylene chloride has two hyperconjugative hydrogen atoms and chloroform has one hyperconjugative hydrogen atom.Therefore methylene chloride should have higher charge separation as compared to chloroform.
- Second one is induction of opposite polarity in a C-Cl bond by another C-Cl bond in a molecule. Higher the opposite induction of polarity, lower the charge separation in a molecule and hence lower the dipole moment of a molecule.
- Chloroform has three C-Cl bonds and methylene chloride has two C-Cl bonds. Therefore opposite induction is higher for chloroform resulting it's lower dipole moment.
See the image below.
An excited electron is in a <em>high-energy state</em>.
When it drops to the lower-level ground state, it must get rid of this excess energy by <em>emitting it</em> as a quantum of light.