Explanation:
The given data is as follows.
Solvent 1 = benzene, Solvent 2 = water
= 2.7,
= 100 mL
= 10 mL, weight of compound = 1 g
Extract = 3
Therefore, calculate the fraction remaining as follows.
![f_{n} = [1 + K_{p}(\frac{V_{S_{2}}}{V_{S_{1}}})]^{-n}](https://tex.z-dn.net/?f=f_%7Bn%7D%20%3D%20%5B1%20%2B%20K_%7Bp%7D%28%5Cfrac%7BV_%7BS_%7B2%7D%7D%7D%7BV_%7BS_%7B1%7D%7D%7D%29%5D%5E%7B-n%7D)
= ![[1 + 2.7(\frac{100}{10})]^{-3}](https://tex.z-dn.net/?f=%5B1%20%2B%202.7%28%5Cfrac%7B100%7D%7B10%7D%29%5D%5E%7B-3%7D)
= 
= 
Hence, weight of compound to be extracted = weight of compound - fraction remaining
= 1 - 
= 0.00001
or, = 
Thus, we can conclude that weight of compound that could be extracted is
.
<span>We have ground strate configurations of electrons,if electrons are filled in order of increasing energy. When there are electrons are in higher orbitals, we have an atom in an excited state.
B, and C are excited states.
In B, 2 electrons can fit in the 4s orbital, and that should fill fully before the 4p orbitals.
In C, the same is true for 5s and 5p
In D, this is not an excited state because 4s fills before 3d</span>
Answer: Reducing agent in the given reaction is
.
Explanation:
A reducing agent is defined as an element which tends to lose electrons to other element leading to an increase in its oxidation number.
In the given reaction, oxidation state of sulfur in
is +2 and
has 0 oxidation state.
In
oxidation state of S is 2.5 and in
oxidation state of I is -1.
Since, an increase in oxidation state of S is occurring from +2 to +2.5. Hence, it is acting as a reducing agent.
Thus, we can conclude that reducing agent in the given reaction is
.
Answer:
53 meters = 53000 millimeters
Explanation:
In this question we have to convert meters into millimeters .
By metric conversion,
Since, 1 meter = 1000 mm
Therefore, 53 meters = 53 × 1000
= 53000 millimeters
53 meters = 53000 millimeters is the answer.
Answer:
im not a brain wiz but i think 20
Explanation: