Answer:
pH = 5.54
Explanation:
The pH of a buffer solution is given by the <em>Henderson-Hasselbach (H-H) equation</em>:
- pH = pKa + log
![\frac{[CH_3COO^-]}{[CH_3COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_3COO%5E-%5D%7D%7B%5BCH_3COOH%5D%7D)
For acetic acid, pKa = 4.75.
We <u>calculate the original number of moles for acetic acid and acetate</u>, using the <em>given concentrations and volume</em>:
- CH₃COO⁻ ⇒ 0.377 M * 0.250 L = 0.0942 mol CH₃COO⁻
- CH₃COOH ⇒ 0.345 M * 0.250 L = 0.0862 mol CH₃COOH
The number of CH₃COO⁻ moles will increase with the added moles of KOH while the number of CH₃COOH moles will decrease by the same amount.
Now we use the H-H equation to <u>calculate the new pH</u>, by using the <em>new concentrations</em>:
- pH = 4.75 + log
= 5.54
Answer:
Nitrobenzene is too deactivated (by the nitro group) to undergo a Friedel-Crafts alkylation.
Explanation:
The benzene ring in itself does not easily undergo electrophilic substitution reaction. Some groups activate or deactivate the benzene ring towards electrophilic substitution reactions.
-NO2 ia a highly deactivating substituent therefore, Friedel-Crafts alkylation of nitrobenzene does not take place under any conditions.
This reaction scheme is therefore flawed because Nitrobenzene is too deactivated (by the nitro group) to undergo a Friedel-Crafts alkylation.
<u>Answer:</u>
Nitrogen gas be a mineral only, if it is in organic forms.
<u>Explanation:</u>
Most of the forms of organic nitrogen is not be taken by plants, with the exception in the form of small organic molecules. Also plants can promptly take the nitrogen when it is in other forms like ammonia and nitrate.
The microorganisms in the soil converts the organic forms of nitrogen to mineral form when they decompose organic matters and also fresh plant residues. This type of process is called mineralisation.
Answer:
Explanation:
A tertiary alcohol is a compound (an alcohol) in which the carbon atom that has the hydroxyl group (-OH) is also bonded (saturated) to three different carbon atoms.
Based on the question, the only <u>tertiary alcohol that can result from C₆H₁₄O that have a 4-carbon chain</u> is
2-hydroxy-2,3-dimethylbutane
H OH H H
| | | |
H - C - C - C - C - H
| | | |
H CH₃ CH₃ H
From the above, we can see that the carbon atom having the hydroxyl group is also bonded to three other carbon atoms. And since we aren't considering stereochemistry, this is the only tertiary alcohol we can have with a 4-carbon chain
<span>Chlorofluorocarbons (CFCs) can damage the ozone layer.</span>