There are 2.32 x 10^6 kg sulfuric acid in the rainfall.
Solution:
We can find the volume of the solution by the product of 1.00 in and 1800 miles2:
1800 miles2 * 2.59e+6 sq m / 1 sq mi = 4.662 x 10^9 sq m
1.00 in * 1 m / 39.3701 in = 0.0254 m
Volume = 4.662 x 10^9 m^2 * 0.0254 m
= 1.184 x 10^8 m^3 * 1000 L / 1 m3
= 1.184 x 10^11 Liters
We get the molarity of H2SO4 from the concentration of [H+] given by pH = 3.70:
[H+] = 10^-pH = 10^-3.7 = 0.000200 M
[H2SO4] = 0.000100 M
By multiplying the molarity of sulfuric acid by the volume of the solution, we can get the number of moles of sulfuric acid:
1.184 x 10^11 L * 0.000100 mol/L H2SO4 = 2.36 x 10^7 moles H2SO4
We can now calculate for the mass of sulfuric acid in the rainfall:
mass of H2SO4 = 2.36 x 10^7 moles * 98.079 g/mol
= 2.32 x 10^9 g * 1 kg / 1000 g
= 2.32 x 10^6 kg H2SO4
Answer:
This problem is providing a chemical equation between two hypothetical elements, X and Y and asks for the molesof X that are needed to
produce 21.00 moles of D in excess Y. After the following work, the answer turns out to be 15.75 mol X:Mole ratios:In chemistry, one the most crucial branches is stoichiometry, which allows us to perform calculations with grams, moles and particles (atoms, molecules and ions). It is based on the concept of mole ratios, whereby the moles of a specific substance can be converted to moles of another one, say product to reactant, reactant to reactant, reactant to product and product to product.
Calculations:In such a way, since 21.00 moles of D are given, we need the mole ratio of D to X in order to get the answer, which according to the reaction is 3:4 based on their coefficients in the reaction. Hence, we calculate the required as follows:
Explanation:
mark me brainliest!!
Answer:
Alfred Wegener proposed the theory of continental drift – the idea that Earth's continents move. Despite publishing a large body of compelling fossil and rock evidence for his theory between 1912 and 1929, it was rejected by most other scientists.
Hope this helps!
The reaction equation is:
<span>2CuO(s) + C(s) </span>→ <span>2Cu(s) + CO</span>₂<span>(g)
First, we determine the number of grams present in one ton of copper oxide. This is:
1 ton = 9.09 x 10</span>⁵ g
We convert this into moles by dividing by the molecular mass of copper oxide, which is:
9.09 x 10⁵ / 79.5 = 11,434 moles
Each mole of carbon reduces two moles of copper oxide, so the moles of carbon required are:
11,434 / 2 = 5,717 moles of Carbon required
The mass of carbon is then:
5,717 x 12 = 68,604 grams
The mass of coke is:
68,604 / 0.95 = 72,214 g
The mass of coke required is 7.22 x 10⁴ grams