Answer:
6
Explanation:
FCC is face centered cubic lattice. In FCC structure, there are eight atoms at the eight corner of the cubic unit cell and one atom centered in each of the faces. FCC unit cells consist of four atoms, (8/8) at the corners and (6/2) in the faces.
Given that, Cu has FCC structure and it contains a vacancy at origin (0, 0, 0). And there is no other vacancy directly adjacent to the vacancy at the origin. So, all the adjacent positions contain Cu atoms. Hence, the total number of adjacent atoms of the vacancy at origin can jump into this vacancy.
the above FCC unit cell clearly indicates that there are six adjacent atoms adjacent to the vacancy at origin
So, the total number of adjacent atoms of the vacancy at origin can jump into this vacancy is 6.
Definition: Cubic centimeter. A cubiccentimetre (cm3) is equal to thevolume of a cube with side length of 1 centimetre. It was the base unit ofvolume of the CGS system of units, and is a legitimate SI unit. It is equal to a millilitre (ml).
Convert ml to cm cubed - Conversion of Measurement Units
Answer:
S = 7.9 × 10⁻⁵ M
S' = 2.6 × 10⁻⁷ M
Explanation:
To calculate the solubility of CuBr in pure water (S) we will use an ICE Chart. We identify 3 stages (Initial-Change-Equilibrium) and complete each row with the concentration or change in concentration. Let's consider the solution of CuBr.
CuBr(s) ⇄ Cu⁺(aq) + Br⁻(aq)
I 0 0
C +S +S
E S S
The solubility product (Ksp) is:
Ksp = 6.27 × 10⁻⁹ = [Cu⁺].[Br⁻] = S²
S = 7.9 × 10⁻⁵ M
<u>Solubility in 0.0120 M CoBr₂ (S')</u>
First, we will consider the ionization of CoBr₂, a strong electrolyte.
CoBr₂(aq) → Co²⁺(aq) + 2 Br⁻(aq)
1 mole of CoBr₂ produces 2 moles of Br⁻. Then, the concentration of Br⁻ will be 2 × 0.0120 M = 0.0240 M.
Then,
CuBr(s) ⇄ Cu⁺(aq) + Br⁻(aq)
I 0 0.0240
C +S' +S'
E S' 0.0240 + S'
Ksp = 6.27 × 10⁻⁹ = [Cu⁺].[Br⁻] = S' . (0.0240 + S')
In the term (0.0240 + S'), S' is very small so we can neglect it to simplify the calculations.
S' = 2.6 × 10⁻⁷ M
Answer : The formula for each of the following is:
(a) 
(b) 
(c) 
Explanation :
- Alkanes are hydrocarbon in which the carbon atoms are connected with single covalent bonds.
The general formula of alkanes is
where n is the number of the carbon atoms present in a molecule of alkane.
- Alkenes are hydrocarbon in which the carbon atoms are connected with double covalent bonds.
The general formula of alkenes is
where n is the number of the carbon atoms present in a molecule of alkene.
- Alkynes are hydrocarbon in which the carbon atoms are connected with triple covalent bonds.
The general formula of alkynes is
where n is the number of the carbon atoms present in a molecule of alkyne.
(a) An alkane with 22 carbon atoms
Putting n = 22 in the general formula of alkane, we get the formula of alkane as,
or 
(b) An alkene with 17 carbon atoms
Putting n = 17 in the general formula of alkene, we get the formula of alkene as,
or 
(c) An alkyne with 13 carbon atoms
Putting n = 13 in the general formula of alkyne, we get the formula of alkyne as,
or 