Answer:
0.501 L
Explanation:
To solve this problem we will use Boyle,s Law. According to this law "The volume of given amount of gas is inversely proportional to applied pressure at constant temperature".
V∝ 1/P
V= K/P
VP=K
Here the K is proportionality constant.
so,
P1V1 = P2V2
P= pressure
V= volume
Given data:
P1= 1 atm
V1= 461 mL
P2= 0.92 atm
V2= ? (L)
To solve this problem we have to convert the mL into L first.
1 L = 1000 mL
461/1000= 0.461 L
Now we will put the values in the equation,
P1V1 = P2V2
V2= P1V1/ P2
V2= 1 atm × 0.461 L / 0.92 atm
V2= 0.501 L
The final temperature is -138 °C.
Explanation:
Using the equation of specific heat

We can easily find the final temperature of a 73.174 g of copper sample. As we know that specific heat is the amount of energy required to raise the temperature of the object to 1°C.
The specific heat of copper is known as 0.387 J/g°C and the initial temperature is said as 102 °C . The mass is given as 73.174 g. The heat released is 6800 J.
Since the heat is released the Q value will be negative.



Thus, the final temperature is -138 °C.
The answer is c Yep Allll day
FeBr₃ ⇒ limiting reactant
mol NaBr = 1.428
<h3>Further explanation</h3>
Reaction
2FeBr₃ + 3Na₂S → Fe₂S₃ + 6NaBr
Limiting reactant⇒ smaller ratio (mol divide by coefficient reaction)
211 g of Iron (III) bromide(MW=295,56 g/mol), so mol FeBr₃ :

186 g of Sodium sulfide(MW=78,0452 g/mol), so mol Na₂S :

Coefficient ratio from the equation FeBr₃ : Na₂S = 2 : 3, so mol ratio :

So FeBr₃ as a limiting reactant(smaller ratio)
mol NaBr based on limiting reactant (FeBr₃) :

Answer:
bowl 5, bowl 3, bowl 4, bowl 1, bowl 2
Explanation: