A.) baking soda is the answer
Answer:
a) 24.7 mol
b) 790 g
Explanation:
Step 1: Given data
- Volume of the chamber (V): 200. L
- Room temperature (T): 23 °C
- Pressure of the gas (P): 3.00 atm
Step 2: Convert "T" to Kelvin
We will use the following expression.
K = °C + 273.15
K = 23°C + 273.15 = 296 K
Step 3: Calculate the moles (n) of oxygen
We will use the ideal gas equation.
P × V = n × R × T
n = P × V/R × T
n = 3.00 atm × 200. L/(0.0821 atm.L/mol.K) × 296 K = 24.7 mol
Step 4: Calculate the mass (m) corresponding to 24.7 moles of oxygen
The molar mass (M) of oxygen ga sis 32.00 g/mol. We will calculate the mass of oxygen using the following expression.
m = n × M
m = 24.7 mol × 32.00 g/mol = 790 g
Answer:
The first kind of body wave is the P wave or primary wave.
Explanation:
This is the fastest kind of seismic wave, and, consequently, the first to 'arrive' at a seismic station.
Answer:
1.25 moles
Explanation:
First, we need to balance the equation. Essentially, this means making sure we have the same number of each atom on each side.
On the left side, we currently have:
- 1 Co atom
- 2 F aomts
On the right side, we have:
- 1 Co atom
- 3 F atoms
To balance it, add a 2 to Co on the left, 3 to F2 on the left, and 2 to CoF3 on the right:
→ 
Now, we have 1.25 moles of Co, and since the ratio between Co and CoF3 is 1:1, we also have 1.25 moles of CoF3.
Thus, the answer is 1.25 moles.
The first thing we need to remember is that:
We have 7.54g of CuCl2 so we need to express this amount in moles dividing by the molar mass of CuCl2.
This is:
And, also remember that 65.0mL equals 0.065L.
Now, replacing in the molarity equation:
Thus the answer is 0.862M.