Answer:
It depends on what kind and how much. Some are about $100, and others are $1,000.
Answer:
0.1313 g.
Explanation:
- It is known that at STP, 1.0 mole of ideal gas occupies 22.4 L.
- Suppose that hydrogen behaves ideally and at STP conditions.
<u><em>Using cross multiplication:</em></u>
1.0 mol of hydrogen occupies → 22.4 L.
??? mol of hydrogen occupies → 1.47 L.
∴ The no. of moles of hydrogen that occupies 1.47 L = (1.0 mol)(1.47 L)/(22.4 L) = 6.563 x 10⁻² mol.
- Now, we can get the no. of grams of hydrogen in 6.563 x 10⁻² mol:
<em>The no. of grams of hydrogen = no. of hydrogen moles x molar mass of hydrogen</em> = (6.563 x 10⁻² mol)(2.0 g/mol) = <em>0.1313 g.</em>
Answer:
a. 0.182
b. 1.009
c. 1.819
Explanation:
Henderson-Hasselbach equation is:
pH = pKa + log [salt / acid]
Let's replace the formula by the given values.
a. 3 = 3.74 + log [salt / acid]
3 - 3.74 = log [salt / acid]
-0.74 = log [salt / acid]
10⁻⁰'⁷⁴ = 0.182
b. 3.744 = 3.74 + log [salt / acid]
3.744 - 3.74 = log [salt / acid]
0.004 = log [salt / acid]
10⁰'⁰⁰⁴ = 1.009
c. 4 = 3.74 + log [salt / acid]
4 - 3.74 = log [salt / acid]
0.26 = log [salt / acid]
10⁰'²⁶ = 1.819
Answer:
on each side of the salt bridge, which is represented by a double vertical line
Explanation:
While writing a cell notation, the general convention is; anode || cathode. The anode and the cathode are separated by a double line. The anode is written on the lefthand side while the cathode is written on the righthand side.
The cell notation is a shorthand representation of a cell, hence any electrochemical cell can easily be produced based on its cell diagram.
Eukaryotic cells, the theoretical maximum yield of ATP generated per glucose is 36 to 38, depending on how the 2 NADH generated in the cytoplasm during glycolysis enter the mitochondria and whether the resulting yield is 2 or 3 ATP per NADH