Answer:
Uses of various electromagnetic waves depend on their relative energy.
Explanation:
The electromagnetic spectrum is the term used by scientists to describe the entire range of light that exists from radio waves to gamma rays. Electromagnetic waves is a wave of alternating electric and magnetic fields. The electromagnetic spectrum is a continuum of all electromagnetic waves arranged according to frequency and wavelength. The sun, earth, and other bodies radiate electromagnetic energy of varying wavelengths. Electromagnetic energy passes through space at the speed of light in the form of sinusoidal waves. The spectrum of waves is divided into sections based on wavelength. The shortest waves are gamma rays, which have wavelengths of 10^-6 microns or less. The longest waves are radio waves, which have wavelengths of many kilometers.
The application of various electromagnetic waves in science and technology depends on the energy of the wave. Electromagnetic waves that possess very high amount of energy are used in medical diagnosis, treatment of tumors, searching of baggage and detection of flaws in metal casting. Examples of such electromagnetic waves include gamma rays and xrays.
Some part of the electromagnetic spectrum possess energy enough to excite chemical bonds and produce spectra characteristic of certain functional groups in molecules. The ultraviolet and infrared rays fall into this category.
Some portion of the spectrum possesses very low energy and long wavelength and are mostly used for communication, mild medical diagnosis and resonance imaging/spectroscopy. Radio waves fall into this category.
All of above. Overdoses have side effects like troubles breathing and other
Answer:
Explanation:
a) 2 chloro butane
b) 2-3 dimethyl butane
c) 2 bromo 3 nitro pentane
d) 2-3 trimethyl pentane
e) 2-bromo,3-methyl,4-nitro hexane
f) 2-methyl cyclo butane
Answer:
The volume of solution in liters required to make a 0.250 M solution from 3.52 moles of solute is 14.08 liters of solution
Explanation:
The question relates to the definition of the concentration of a solution which is the number of moles per liter (1 liter = 1 dm³) of solution
Therefore we have;
The concentration of the intended solution = 0.250 M
Therefore, the number of moles per liter of the required resolution = 0.250 moles
Therefore, the concentration of the required solution = 0.250 moles/liter
The volume in liters of the required solution that will have 3.52 moles of the solute is given as follows;
The required volume of solution = The number of moles of the solute/(The concentration of the solution)
∴ The required volume of solution = 3.52 moles/(0.250 moles/liter) = 14.08 liters
The required volume of solution to make a 0.250 M solution from 3.52 moles of solute = 14.08 liters.
Therefore the number of liters required to make a 0.250 M solution from 3.52 moles of solute = 14.08 liters.
Answer: a)
: Decomposition
b)
: double displacement
c)
: Synthesis (Combination)
d)
: redox
Explanation:
Decomposition is a type of chemical reaction in which one reactant gives two or more than two products.

A double displacement reaction is one in which exchange of ions take place.

Synthesis reaction is a chemical reaction in which two reactants are combining to form one product.

Redox reaction is a type of chemical reaction in which oxidation and reduction takes place in one single reaction. The oxidation number of one element increases and the oxidation number of other element decreases.
