1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
steposvetlana [31]
3 years ago
14

A 3050 foot long road travels directly up a 550 foot tall hill. Select the equation that can be used to solve for the angle of e

levation (0) from the bottom of the hill.

Mathematics
1 answer:
dezoksy [38]3 years ago
6 0

Answer:

d <em><u>is</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>✌</u></em><em><u>sin</u></em><em><u> </u></em><em><u>०</u></em><em><u>=</u></em><em><u>3</u></em><em><u>0</u></em><em><u>0</u></em><em><u>0</u></em><em><u>/</u></em><em><u>3</u></em><em><u>0</u></em><em><u>5</u></em><em><u>0</u></em>

You might be interested in
Prove that:
Lorico [155]
A.)

   \csc^2(x) \tan^2 (x)- 1 = \tan^2(x)

Use the identities \csc x = 1 / \sin x and \tan x = \sin x / \cos x on the left-hand side

   \begin{aligned}&#10;\text{LHS} &= \csc^2(x) \tan^2 (x)- 1 \\&#10;&= \frac{1}{\sin^2 (x)} \cdot \frac{\sin^2 (x)}{\cos^2 (x)} - 1 \\&#10;&= \frac{1}{\cos^2 (x)} - 1&#10;\end{aligned}

Make 1 have a common denominator to allow for fraction subtraction
Multiply the numerator and denominator of 1 by cos^2 x

   \begin{aligned} \text{LHS} &= \frac{1}{\cos^2 (x)} - 1 \cdot \tfrac{\cos^2 (x)}{\cos^2 (x)}  \\&#10;&=  \frac{1}{\cos^2 (x)} - \frac{\cos^2 (x)}{\cos^2 (x)} \\&#10;&=  \frac{1 - \cos^2 x}{\cos^2 (x)}&#10;\end{aligned}

Use Pythagorean identity for the numerator.

If \sin^2 (x) + \cos^2(x) = 1 then subtracting both sides by \cos^2 (x) yields \sin^2(x) = 1 - \cos^2(x). We can substitute that into the numerator

   \begin{aligned} \text{LHS} &= \frac{1 - \cos^2 (x)}{\cos^2 (x)} \\&#10;&= \frac{\sin^2 (x)}{\cos^2 (x)} \\&#10;&= \tan^2 (x) && \text{Since } \tan x = \tfrac{\sin x }{\cos x} \\&#10;&= \text{RHS}&#10;\end{aligned}

======

b.)

   \dfrac{\sec(x)}{\cos(x)} - \dfrac{\tan(x)}{\cot(x)} = 1

For the left-hand side:
By definition, \sec(x) = 1/\cos(x) and \tan (x) = 1/\cot (x)

   \begin{aligned}&#10;\text{LHS} &= \dfrac{\sec(x)}{\cos(x)} - \dfrac{\tan(x)}{\cot(x)}  \\&#10;&= \dfrac{ \frac{1}{\cos(x)} }{\cos(x)} - \dfrac{\frac{1}{\cot(x)}}{\cot(x)} \\&#10;&= \frac{1}{\cos^2 (x)} - \frac{1}{\cot^2(x)} &#10;\end{aligned}

Since \cot (x) = \cos (x) / \sin (x)

   \begin{aligned} \text{LHS} &= \frac{1}{\cos^2 (x)} - \frac{1}{\frac{\cos^2(x)}{\sin^2(x)} } \\ &= \frac{1}{\cos^2 (x)} -\frac{\sin^2(x)}{\cos^2(x)} \\ &= \frac{1 - \sin^2(x)}{\cos^2 (x)} \end{aligned}

Using Pythagorean identity, \cos^2(x) = 1 - \sin^2(x) so

   \begin{aligned} \text{LHS} &= \frac{\cos^2(x)}{\cos^2 (x)} \\&#10;&= 1 \\&#10;&= \text{RHS}&#10;\end{aligned}

6 0
3 years ago
I will give brainly for best answer plzzz help
aivan3 [116]
A.TRUE B.FALSE c.TRUE
4 0
3 years ago
Read 2 more answers
A racing committee wants to lay out a triangular course with a 40 degree angle between the two sides of 3.5 miles and 2.5 miles.
castortr0y [4]
Shehaidksj how. usuejejjrjdjdjdjdjjdjdjdjdjdndjdjdjdhjdjdndjd
6 0
3 years ago
What much expression represents a rational number?
Pie

Answer:

\displaystyle \frac{2}{7}+\sqrt{121}

Step-by-step explanation:

<u>Rational Numbers</u>

A rational number is any number that can be expressed as a fraction

\displaystyle \frac{a}{b}, \ b\neq 0

for a and b any integer and b different from 0.

As a consequence, any number that cannot be expressed as a fraction or rational number is defined as an Irrational number.

Let's analyze each one of the given options

\displaystyle \frac{5}{9}+\sqrt{18}

The first part of the number is indeed a rational number, but the second part is a square root whose result cannot be expressed as a rational, thus the number is not rational

\pi + \sqrt{16}

The second part is an exact square root (resulting 4) but the first part is a known irrational number called pi. It's not possible to express pi as a fraction, thus the number is irrational

\displaystyle \frac{2}{7}+\sqrt{121}

The square root of 121 is 11. It makes the whole number a sum of a rational number plus an integer, thus the given number is rational

\displaystyle \frac{3}{10}+\sqrt{11}

As with the first number, the square root is not exact. The sum of a rational number plus an irrational number gives an irrational number.

Correct option:

\boxed{\displaystyle \frac{2}{7}+\sqrt{121}}

6 0
3 years ago
Y = 5/x/+2 <br> Does it compress up 2 or stretch up 2
Dmitriy789 [7]

Answer:

It compresses up 2

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • If the circle in the diagram revolves about the vertical dashed line, which type of geometrical shape will it generate?
    8·2 answers
  • What is the equation of this graphed line? (2,6) (-4,-6)
    15·1 answer
  • Simplify 225 over 40<br>(in fraction form)
    9·2 answers
  • WHATS 15 DIVIDE BY 6
    15·2 answers
  • PLEASE HELP MEEEEEEEEEEEEEEEEEEEE
    15·1 answer
  • What is 22.5 rounded to the nearest tenth?
    7·2 answers
  • Which congruence postulate or theorem shows that the triangles below are congruent?
    15·1 answer
  • Is anybody else here to help me ??​
    14·1 answer
  • I need help with this<br><br><br><br><br><br><br><br> Q5
    9·2 answers
  • What is the lcd of 1/4 and 1/6​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!