We have all the charges for q1, q2, and q3.
Since k = 8.988x10^2, and N=m^2/c^2
F(1) = F (2on1) + F (3on1)
F(2on1) = k |q1 q2| / r(the distance between the two)^2
k^ | 3x10^-6 x -5 x 10^-6 | / (.2m)^2
F(2on1) = 3.37 N
Since F1 is 7N,
F(1) = F (2on1) + F (3on1)
7N = 3.37 N + F (3on1)
Since it wil be going in the negative direction,
-7N = 3.37 N + F (3on1)
F(3on1) = -10.37N
F(3on1) = k |q1 q3| / r(the distance between the two)^2
r^2 x F(3on1) = k |q1 q3|
r = sqrt of k |q1 q3| / F(3on1)
= .144 m (distance between q1 and q3)
0 - .144m
So it's located in -.144m
Thank you for posting your question. I hope that this answer helped you. Let me know if you need more help.
you could make a self propelled car all you need is cardboard, wheels, and a balloons or rubber bands
The mineral with Mohs hardness would be scratched because the mineral with Mohs 7 hardness is stronger than the Mohs 5 mineral. Eventually, that mineral would turn into dust if you kept rubbing it.
Answer:
Expression of work done is

Work done to move the sled is given as 187.2 J
Explanation:
As we know that the formula of work done is given as

here we know that
F = 12.6 N
d = 15.4 m

so we will have


Answer:
Once a carnivorous plant has procured an item for dinner, it has to have some way to turn it into fertilizer. What carnivorous plants do is very similar to what humans do with their dinner after they have eaten it. Most carnivorous plants have glands that secrete acids and enzymes to dissolve proteins and other compounds. The plants may also enlist other organisms to help with digestion. The plants then absorb the nutrients made available from the prey.
Drosera releases digestive juices through the glands at the tip of its tentacles and absorbs the nutrients through the tentacles, leaf surface, and sessile glands. In order to do this it bends its tentacles and rolls or bends the leaf to get as many tentacles as possible into contact with the prey for digestion and to make as much leaf surface available for absorption. Its relative Drosophyllum has differently structured, non moving tentacles and doesn't use them directly for digestion. Instead it has specialized glands on the surface of the leaf that release the digestive enzymes (see Carniv. Pl. Newslett. 11(3):66-73 ( PDF ) for drawings and discussion).
The sealed trap of Dionaea does digestion in a way similar to the leaf surface digestion carnivores—upon capture of a prey, digestive enzymes in mucous are released. The advantage of the sealed trap of Dionaea is rain won't wash away the nutrients as digestion proceeds.
The sealed trap carnivores Aldrovanda and Utricularia already have water in their traps so they only need to release enzymes. Utricularia appears to release the enzymes continuously into its traps.
The other carnivorous plants use either a mixed mode of digestive enzymes and partner organisms (Genlisea, Sarracenia, most Nepenthes, Cephalotus, some Heliamphora, Roridula) or other organisms exclusively for digestion (most Heliamphora, some Nepenthes, Darlingtonia). Part of the reason for partnering with other organisms is that the plants actually have little choice in the matter. This could also be a factor for the leaf surface and sealed trap digesters as well. The prey will have gut flora that are quite capable of digesting their host when it dies. In addition, insect larvae, frog tadpoles, and predacious protozoans will or will attempt to take up residence in water-filled traps. The plant releasing digestive enzymes and acids into the traps will help tip the nutrition balance to themselves, but there are limits.
Explanation: