Answer:
16km/h
Explanation:
Vt=20km/h ---train speed
Vd=4km/h
Donas speed relative to ground is:
Vrd=Vt-Vd
Donas is moving in opposite direction of train .
Vrd=20km/h-4km/h
Vrd=16km/h
Answer:
(1) A sound wave a mechanical wave because mechanical waves rely on particle interaction to transport their energy, they cannot travel through regions of space that are void of particles. Sound is a mechanical wave and cannot travel through a vacuum. These particle-to-particle, mechanical vibrations of sound conductance qualify sound waves as mechanical waves. Sound energy, or energy associated with the vibrations created by a vibrating source, requires a medium to travel, which makes sound energy a mechanical wave. The answer is(B) it travels in the medium.
(2) An ocean wave is an example of a mechanical transverse wave
The compression is the part of the compressional wave where the particles are crowded together. The rarefaction is the part of the compressional wave where the particles are spread apart. The answer is (C) Compression.
Answer
Hi,
In a chemical equation, chemicals that react are the reactants, while chemicals that are produced are the products/by products. Both sides of the equation must be balanced.
Explanation
When writing a chemical equation, reactants reacts to produce products. For example in the equation for formation of water, hydrogen combines with oxygen as 2H₂ +O₂→2H₂O where the first part before the arrow represent the reactants and the next part after the arrow are the products. Reactants are on the left where as products are on the right.Coefficient 2, in this cases is used for balancing the equation.
Good luck!
Answer:
Because the light reflects multiple times until it gets to the Cassegrain focus.
Explanation:
The Cassegrain design can be seen in a reflecting telescope. In this type of design the light is collected by a concave mirror, and then intercepted by a secondary convex mirror, and sends it down to a central opening in the primary mirror (concave mirror), in which a detector is placed (Cassegrain focus)
Since, the light is reflected many times due to Cassegrain design, that leads to shorter telescopes.
Answer:
The answer is
<h2>84.9 kPa</h2>
Explanation:
Using Boyle's law to find the final pressure
That's

where
P1 is the initial pressure
P2 is the final pressure
V1 is the initial volume
V2 is the final volume
Since we are finding the final pressure

From the question
P1 = 115 kPa
V1 = 480 mL
V2 = 650 ml
So we have

We have the final answer as
<h3>84.9 kPa</h3>
Hope this helps you