Answer:
- The maximum height reached by the ball is 45.92 m
- Time taken to fall down to half of its height is 2.2 s
Explanation:
Given;
initial velocity of the ball, u = 30 m/s
final velocity of the ball at the highest point, v = 0
The maximum height reached by the ball is calculated as;
v² = u² - 2gh
where;
h is the maximum height reached by the ball
0 = 30² - (2 x 9.8)h
19.6h = 900
h = 900 / 19.6
h = 45.92 m
Time taken to fall to half of its height is calculated as;
when falling down, the final velocity v becomes the initial velocity = 0.
Apply the following kinematic equation;
h = ut + ¹/₂gt²
h = 0 + ¹/₂gt²
h = ¹/₂gt²
where;
h = 45.92 m is the maximum height reached
half of h = 45.92 / 2 = 22.96 m
22.96 = ¹/₂gt²

Answer:
<h2>
650W/m²</h2>
Explanation:
Intensity of the sunlight is expressed as I = Power/cross sectional area. It is measured in W/m²
Given parameters
Power rating = 6.50Watts
Cross sectional area = 100cm²
Before we calculate the intensity, we need to convert the area to m² first.
100cm² = 10cm * 10cm
SInce 100cm = 1m
10cm = (10/100)m
10cm = 0.1m
100cm² = 0.1m * 0.1m = 0.01m²
Area (in m²) = 0.01m²
Required
Intensity of the sunlight I
I = P/A
I = 6.5/0.01
I = 650W/m²
Hence, the intensity of the sunlight in W/m² is 650W/m²
Answer:
Suppose any object with mass in our planet.
The object will be affected by the gravitational force, that pulls the object down. Now, a table in your dining room is also affected by this force, but the table is in a surface (the ground) and it does not move.
We know that if an object does not move, then the net force acting on it is equal to zero, this means that there is a force equal and opposite ot the gravitational force.
This force is the normal force, that the ground applies on the table. This force comes as a "response" to the table pushing the ground (By 3rd Newton's law).
So two forces that are always equal and opposite are the forces caused by this law.
If you mean like electromagnetic waves then, Mico waves, UV rays, and infrared waves
Answer:
Quarks
Explanation:
Quarks, the smallest particles in the universe, are far smaller and operate at much higher energy levels than the protons and neutrons in which they are found.