Volume of Argon V1 = 5.0 L
Pressure of Argon P1 = 2 atm
Final temperature T2 = 30 C = 30 + 273 = 303 K
Volume at final temperature V2= 6 L
Pressure at final temperature P2 = 8 atm
We know that (P1 x V1) / T1 = (P2 x V2) / T2
(2 x 5)/ T1 = (8 x 6)/ 303 => T1 = (10 x 303) / 48
Initial Temperature T1 = 3030 / 48 = 63.12
Initial Temperature = -209. 8 C
Answer:
To determine the enthalpy and entropy of dissolving a compound, you need to measure the Ksp at multiple temperatures. Then, plot ln(Ksp) vs. 1/T. The slope of the plotted line relates to the enthalpy (ΔH) of dissolving and the intercept of the plotted line relates to the entropy (ΔS) of dissolving.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us use the thermodynamic definition of the Gibbs free energy and its relationship with Ksp as follows:

Thus, by combining them, we obtain:

Which is related to the general line equation:

Whereas:

It means that we answer to the blanks as follows:
To determine the enthalpy and entropy of dissolving a compound, you need to measure the Ksp at multiple temperatures. Then, plot ln(Ksp) vs. 1/T. The slope of the plotted line relates to the enthalpy (ΔH) of dissolving and the intercept of the plotted line relates to the entropy (ΔS) of dissolving.
Regards!