A is correct answer.
<span>The expansion of landfills with too much garbage to recycle.
</span>
Hope it helped you.
-Charlie
First of all there nothing exists something like SSA congruence criterion, It is SAS Congruence where the sides of a Triangle and the angle between them is exactly same to the other two sides and angle between them of another triangle.
So the correct option is D.
Explanation:
If the Triangle has two sides equal, so the two angles there are equal. Also the other angle be some other definite angle. So
45+x+x=180(Considering definite angle to be 45)
2x=135
x=67.5
So there is only one solution to the triangle.
Interesting problem. Thanks for posting.
C2H2 + (3/2)02 ====> H2O + 2CO2
CH4 + 2O2 =====> 2H2O + CO2
The molar mass of C2H2 = 2*12 + 2*1 = 26
The molar mass of CH4 = 1*12 + 4*1 = 16
The number of moles of C2H2 = x
The number of moles of CH4 = y
26x + 16y = 230.9 grams
For water we get (from the C2H2). Water has a molar mass of 2*1 + 16 = 18
x*18 See the balanced equation to see what it is the same number of moles as C2H2
From the methane we get
y*18
2*y* 18. Again see the balanced equation to see where that 2 came from.
18x + 36y is the total amount of water.
Now for the CO2. CO2 has a molar mass of 12 + 2*16 = 44
From C2H2 we get 2*44*x = 88x grams of CO2
From CH4 we get 1*y*44 grams of CO2
88x + 44y for CO2
Now we total to get the grand total of water and CO2
18x + 44y + 88x + 44y = 972.7 grams total.
106x + 88y = 972.7
Two equations, two unknowns, we should be able to solve this problem
26x + 16y = 230.9
106x + 88y = 972.7
I'm not going to go through the math unless you request me to do so.
x = 8.03 moles
y = 1.38 moles
The initial amount of C2H2 was 8.03 * 26 = 208.78
The initial amount of CH4 was 16*1.38 = 22.08
The total (as a check is 230.86 which is pretty close to the given amount.
So Methane's mass in the initial givens was 22.08 grams.
Answer:
a. ![K_c = \dfrac{[ FeSCN^{3+}_{(aq)}] }{[Fe^{3+}_{(aq)}] [SCN^-_{(aq)}]}](https://tex.z-dn.net/?f=K_c%20%3D%20%5Cdfrac%7B%5B%20FeSCN%5E%7B3%2B%7D_%7B%28aq%29%7D%5D%20%7D%7B%5BFe%5E%7B3%2B%7D_%7B%28aq%29%7D%5D%20%5BSCN%5E-_%7B%28aq%29%7D%5D%7D)
b. ![K_p = \dfrac{[H_2]^4}{[H_2O]^4}](https://tex.z-dn.net/?f=K_p%20%3D%20%5Cdfrac%7B%5BH_2%5D%5E4%7D%7B%5BH_2O%5D%5E4%7D)
Explanation:
Untuk semua jenis reaksi umum:

Konstanta kesetimbangan ![K_c = \dfrac{[C]^c [D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_c%20%3D%20%5Cdfrac%7B%5BC%5D%5Ec%20%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
Dari pertanyaan yang diberikan:
a. 
Konstanta kesetimbangan:
![K_c = \dfrac{[ FeSCN^{3+}_{(aq)}] }{[Fe^{3+}_{(aq)}] [SCN^-_{(aq)}]}](https://tex.z-dn.net/?f=K_c%20%3D%20%5Cdfrac%7B%5B%20FeSCN%5E%7B3%2B%7D_%7B%28aq%29%7D%5D%20%7D%7B%5BFe%5E%7B3%2B%7D_%7B%28aq%29%7D%5D%20%5BSCN%5E-_%7B%28aq%29%7D%5D%7D)
b. 
Konstanta kesetimbangan untuk tekanan parsial 
![K_p = \dfrac{[H_2]^4}{[H_2O]^4}](https://tex.z-dn.net/?f=K_p%20%3D%20%5Cdfrac%7B%5BH_2%5D%5E4%7D%7B%5BH_2O%5D%5E4%7D)
Karena Fe3O4 (s) hadir sebagai padatan.