Chlorophyll captures the sun's energy and is used as energy to complete the photosynthesis process
The atom positions in a general molecule of formula (not shape class) AXn that has shape square pyramidal at the corers of square and one at the above center of the square.
<h3>What is square pyramidal?</h3>
The square pyramidal is a shape geometry of the hybridization in which it consists of one lone pair and 5 bond pairs of electrons that repel each other and due to which the geometry changes from octahedral to square pyramidal.
As atoms are located at the four corners of the planer and one atom at the above center of the planner which is repelled by 4 atoms present at the corner of the planer.
Therefore, the atom positions in a general molecule of formula (not shape class) AXn that has a shape square pyramidal at the corners of the square and one at the above center of the square.
Learn more about square pyramidal, here;
brainly.com/question/8742529
#SPJ4
Answer:
Law of Lateral Continuity The Grand Canyon.
and
he same rock layers on opposite sides of the canyon. The matching rock layers were deposited at the same time, so they are the same age.
Answer:
A. Thin
Explanation:
i took the test a while back yw <3
Answer:

Explanation:
Firstly, write the expression for the equilibrium constant of this reaction:
![K_{eq} = \frac{[ADP][Pi]}{ATP}](https://tex.z-dn.net/?f=K_%7Beq%7D%20%3D%20%5Cfrac%7B%5BADP%5D%5BPi%5D%7D%7BATP%7D)
Secondly, we may relate the change in Gibbs free energy to the equilibrium constant using the equation below:

From here, rearrange the equation to solve for K:

Now we know from the initial equation that:
![K_{eq} = \frac{[ADP][Pi]}{ATP}](https://tex.z-dn.net/?f=K_%7Beq%7D%20%3D%20%5Cfrac%7B%5BADP%5D%5BPi%5D%7D%7BATP%7D)
Let's express the ratio of ADP to ATP:
![\frac{[ADP]}{[ATP]} = \frac{[Pi]}{K_{eq}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BADP%5D%7D%7B%5BATP%5D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7BK_%7Beq%7D%7D)
Substitute the expression for K:
![\frac{[ADP]}{[ATP]} = \frac{[Pi]}{K_{eq}} = \frac{[Pi]}{e^{-\frac{\Delta G^o}{RT}}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BADP%5D%7D%7B%5BATP%5D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7BK_%7Beq%7D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7Be%5E%7B-%5Cfrac%7B%5CDelta%20G%5Eo%7D%7BRT%7D%7D%7D)
Now we may use the values given to solve:
![\frac{[ADP]}{[ATP]} = \frac{[Pi]}{K_{eq}} = \frac{[Pi]}{e^{-\frac{\Delta G^o}{RT}}} = [Pi]e^{\frac{\Delta G^o}{RT}} = 1.0 M\cdot e^{\frac{-30 kJ/mol}{2.5 kJ/mol}} = 6.14\cdot 10^{-6}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BADP%5D%7D%7B%5BATP%5D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7BK_%7Beq%7D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7Be%5E%7B-%5Cfrac%7B%5CDelta%20G%5Eo%7D%7BRT%7D%7D%7D%20%3D%20%5BPi%5De%5E%7B%5Cfrac%7B%5CDelta%20G%5Eo%7D%7BRT%7D%7D%20%3D%201.0%20M%5Ccdot%20e%5E%7B%5Cfrac%7B-30%20kJ%2Fmol%7D%7B2.5%20kJ%2Fmol%7D%7D%20%3D%206.14%5Ccdot%2010%5E%7B-6%7D)