1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jok3333 [9.3K]
3 years ago
8

Please help giving brainiest

Mathematics
2 answers:
Klio2033 [76]3 years ago
3 0
I think it’s the last one sorry if I’m wrong
netineya [11]3 years ago
3 0

Answer:

I think so too is the last one

You might be interested in
Is the point (5, -7) a solution to the equation <br> Y &gt; -2x + 3
nordsb [41]
No,isn’t solution
-7>-2*5+3
-7>-7 wrong
3 0
3 years ago
Simplify.<br> √20⋅√3·√18<br><br> 5√30<br><br> 5√10<br><br> 6√10<br><br> 6√30
ddd [48]

The correct answer is:   [D]:  " 6√30 " .


_____________________________________


Explanation:


_____________________________________


Simplify:   " √20 ⋅ √3 · √18 " :


___________________________


Step 1)  Simplify the "first term" :

"√20  " = √4 √5 = 2√5  ;


___________________________


Step 2):  Consider the "second term:  

                  "√3 " = √3  (already simplified); 


___________________________


Step 3)  Simplifly the "third term" :

" √18  "  =  √9 * √2 =  " 3√2 " ;


____________________________

We have:  " 2√5 * √3 * 3√2 " ;

                 =   (2* 3) *  (√5 * √3 * √2) ;

                 =  6 * (√5 √3 √2)  ;

Note:  " (√5 * √3 * √2 )"  =   " √(5 * 3 * 2) "  =  " √ 30 " .

So:    " 6 * (√5 * √3 * √2)  =

______________________________________

          →   " 6 √30 " .

______________________________________

The answer is:  " 6√30 " ;

       →  which is:  "Answer choice:  [D]:  " 6√30 " .

_____________________________________

Hope this answer helps!

Best wishes!

_____________________________________

5 0
3 years ago
Read 2 more answers
Let an be the sum of the first n positive odd integers.
sesenic [268]

Answer:

A) The first 4 terms of the sequences are: a_{1} =16, a_{2} =24, a_{3} =32 and a_{4} =40.

B) An explicit formula for this sequence can be written as: a_{n} =8*(n+1)

C) A recursive formula for this sequence can be written as:

\left \{ {{a_{1} =16} \atop {a_{n} =a_{n-1}+8}} \right.

Step-by-step explanation:

A) You can find the firs terms of this sequence simply selecting an odd integer and summing the consecutive 3 ones:

a_{n} = Odd_{n}+Odd_{n+1}+Odd_{n+2}+Odd_{n+3} (a.1)

a_{1}=1+3+5+7=16

a_{2}=3+5+7+9=24

a_{3}=5+7+9+11=32

a_{4}=7+9+11+13=40

B) Observe the sequence of odd numbers 1, 3, 5, 7, 9, 11, 13(...).

You can express this sequence as:

Odd_{n}=(2*n-1) (b.1)

If you merge the expression b.1 in a.1, you obtain the explicit formula of the sequence:

a_{n} = Odd_{n}+Odd_{n+1}+Odd_{n+2}+Odd_{n+3} (a.1)

a_{n} = (2*n-1)+((2*(n+1)-1))+((2*(n+2)-1))+((2*(n+3)-1)) (b.2)

a_{n} = 8*n+8 (b.3)

a_{n} =8*(n+1) (b.s)

C) The recursive formula has to be written considering an initial term and an N term linked with the previous term. You can see an addition of 8 between a term and the next one. So you can express each term as an addition of 8 with the previous one. Therefore, if the first term is 16:

\left \{ {{a_{1} =16} \atop {a_{n} =a_{n-1}+8}} \right. (c.s)

5 0
3 years ago
Tell which equation you would choose to solve for one of the variables. Explain.
lapo4ka [179]

Answer:

i would choose to solve x+2y=0 because it is simple and ez

Step-by-step explanation:

i took test and got 100 % brainliest plz

5 0
3 years ago
What is the correct first step to solve this system of equations by elimination?
storchak [24]

\bold{\huge{\pink{\underline{ Solution }}}}

\bold{\underline{ Given }}

  • <u>We </u><u>have </u><u>given </u><u>two </u><u>linear </u><u>equations </u><u>that</u><u> </u><u>is </u><u>2x </u><u>-</u><u> </u><u>3y </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u><u>and </u><u>x</u><u> </u><u>+</u><u> </u><u>3y </u><u>=</u><u> </u><u>1</u><u>2</u><u> </u><u>.</u>

\bold{\underline{ To \: Find }}

  • <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>value </u><u>of </u><u>x </u><u>and </u><u>y </u><u>by </u><u>elimination </u><u>method</u><u>. </u>

\bold{\underline{ Let's \: Begin }}

\sf{ 2x - 3y = -6 ...eq(1)}

\sf{ x +  3y = 12 ...eq(2)}

<u>Multiply </u><u>eq(</u><u> </u><u>2</u><u> </u><u>)</u><u> </u><u>by </u><u>2</u><u> </u><u>:</u><u>-</u>

\sf{ 2( x + 3y = 12 )}

\sf{ 2x + 6y = 24 }

<u>Subtract </u><u>eq(</u><u>1</u><u>)</u><u> </u><u>from </u><u>eq(</u><u>2</u><u>)</u><u> </u><u>:</u><u>-</u>

\sf{ 2x + 6y -( 2x - 3y) = 24 -(-6)}

\sf{ 2x + 6y - 2x + 3y = 24 + 6 }

\sf{   9y = 30 }

\sf{   y = 30/9}

\sf{\red{ y = 10/3}}

<u>Now</u><u>, </u><u> </u><u>Subsitute</u><u> </u><u>the </u><u>value </u><u>of </u><u>y </u><u>in </u><u>eq(</u><u> </u><u>1</u><u> </u><u>)</u><u>:</u><u>-</u>

\sf{ 2x - 3(10/3) = -6 }

\sf{ 2x - 10 = -6 }

\sf{ 2x  = -6 + 10}

\sf{ x  = 4/2}

\sf{\red{ x  = 2}}

Hence, The value of x and y is 2 and 10/3

6 0
3 years ago
Other questions:
  • It takes george 1 hour longer to mow the lawn than it takes henry. working together, using two mowers, they can mow the lawn in
    13·1 answer
  • What comes after 5,10,20,40,80...
    15·1 answer
  • What is 117.28 rounded to the nearest 10 cents?
    8·2 answers
  • Find the area of the shape shown below.
    8·2 answers
  • HELP SOMEONE PLEASE IGHHH
    11·1 answer
  • calculate the length of a piece of copper wire with a diameter of 2 mm and a resistance of 0.5omh. The resistivity value of this
    7·1 answer
  • What is the length of arc AB? Round your answer to the nearest hundredth
    5·1 answer
  • Please at least help me cause I have no idea
    10·1 answer
  • 23 X y -4 6 -1 1 5 -9​
    6·2 answers
  • What is <br> ( x + 1 ) ^2
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!