1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Liula [17]
3 years ago
14

Two spherical objects have masses of 3.1 x 10^5 kg and 6.5 x 10^3 kg. The gravitational attraction between them is 65 N. How far

apart are their centers? (answer to 2 digits)
Physics
1 answer:
nata0808 [166]3 years ago
3 0

Answer:

4.55 x 10⁹m

Explanation:

Given parameters:

Mass of object 1  = 3.1 x 10⁵kg

Mass of object 2 = 6.5 x 10³kg

Gravitational force  = 65N

Unknown:

Distance between them  = ?

Solution:

To solve this problem, we use the expression below from the universal gravitational law;

    Fg  =    \frac{G mass 1 x mass 2}{distance ^{2} }  

   G = 6.67 x 10⁻¹¹

        65  = \frac{6.67 x 10^{11} x 3.1 x 10^{5} x 6.5 x 10^{3}   }{distance^{2} }    

   Distance  = 4.55 x 10⁹m

         

You might be interested in
Emmett is lifting a box vertically. Which forces are necessary for calculating the total force?
GrogVix [38]

When Emmett is lifting a box vertically, the forces that must be added to calculate the total force are: the gravitational force, tension force(the force exerted by Emmett to the box and the force exerted by the box to Emmett), and air resistance force.

4 0
2 years ago
2. Find the time taken by the bus to reach the stop. need only group B, 2 answer
Molodets [167]

Answer:

t = 2 seconds

Explanation:

In 2nd question, the question is given the attached figure.

Initial speed of the bus, u = 0

Acceleration of the bus, a = 8 m/s²

Final speed, v = 16 m/s

We need to find the time taken by the car to reach the stop. Acceleration of an object is given by :

a=\dfrac{v-u}{t}

t is time taken

t=\dfrac{v-u}{a}\\\\t=\dfrac{16-0}{8}\\\\t=2\ s

The bus will take 2 seconds to reach the stop.

3 0
3 years ago
Professional Application. A 96 kg football player catches a 0.900 kg ball with his feet off the ground with both of them moving
Zarrin [17]

To solve this problem it is necessary to apply the equations related to the conservation of momentum.

This definition can be expressed as

m_1u_1+m_2u_2 = (m_1+m_2)V_f

Where

m_{1,2} = Mass of each object

u_{1,2} = Initial Velocity of each object

V_f= Final velocity

Rearranging the equation to find the final velocity we have,

V_f = \frac{m_1u_1+m_2u_2}{(m_1+m_2)}

Our values are given as

m_1 = 96Kg\\m_2 = 0.9Kg\\u_1 = 6.3m/s\\u_2 = 27.4m/s

Replacing we have,

V_f = \frac{(96)(6.3)+(0.9)(27.4)}{(96+0.9)}

V_f = 6.4959m/s

Therefore the final velocity is 6.5m/s

3 0
3 years ago
An object that completes 20 vibrations in 10 seconds has a frequency of
nika2105 [10]

Answer:

<em> The object has frequency of 2 Hz and time period of 0.5 s.</em>

Explanation:

<em>Frequency</em> is defined as number of oscillation per second ie back and forth swings done in single second.

Here it is given that the object oscillates 20 times in 10 seconds.

So f = \frac{20}{10} = 2Hz

The <em>time period</em> is defined as time taken by the object to complete one full oscillation.

T = \frac{1}{f}

T= \frac{1}{2} =0.5 s

<em>Thus the object has frequency of 2 Hz and time period of 0.5 s.</em>

7 0
3 years ago
Two resistors, A and B, are connected in series to a 6.0 V battery. A voltmeter connected across resistor A measures a potential
mestny [16]

Answer:

Resistance of resistor A = 6.0 Ω and resistance of resistor B = 3.0 Ω

Explanation:

When the two resistors are in series, let V₁ = voltage in resistor A and R₁ = resistance of resistor A and V₂ = voltage in resistor B and R₂ = resistance of resistor B.

Given that V₁ + V₂ = 6.0 V and V₁ = 4.0 V,

V₂ = 6.0 V - V₁ = 6.0 V - 4.0 V = 2.0 V

Also, let the current in series be I.

So, V₁ = IR₁ and V₂ = IR₂

I = V₁/R₁ and I = V₂/R₂

equating both expressions, we have

V₁/R₁ = V₂/R₂

4.0 V/R₁ = 2.0 V/R₂

dividing through by 2.0 V, we have

2/R₁ = 1/R₂

taking the reciprocal, we have

R₂ = R₁/2

R₁ = 2R₂

From the parallel connection, let V₁ = voltage in resistor A and R₁ = resistance of resistor A and V₂ = voltage in resistor B and R₂ = resistance of resistor B. Since it is parallel, V₁ = V₂ = V = 6.0 V

Also, V₂ = I₂R₂ where I₂ = current in resistor B = 2.0 A and R₂ = resistance of resistor B

So, R₂ = V₂/I₂

= 6.0 V/2.0 A

= 3.0 Ω

R₁ = 2R₂

= 2(3.0 Ω)

= 6.0 Ω

So, resistance of resistor A = 6.0 Ω and resistance of resistor B = 3.0 Ω

6 0
3 years ago
Other questions:
  • A rollerblader is blading along the sidewalk. Which forms of measurement would be the best to use to determine the rollerblader'
    5·1 answer
  • How many objects to Newton’s first and second laws deal with
    15·1 answer
  • What is the term of movement in a particular direction
    5·1 answer
  • If a 51kg snowboarder falls of a cliff, and is falling 15 m/s when they impact the snow, what is the average force of the snow o
    5·1 answer
  • A force of 75 N is applied to a spring, causing it to stretch 0.3 m. What is the spring constant of the spring?
    9·1 answer
  • Need help on this one please
    5·1 answer
  • Explain how an object can have force acting on it but not be acceleration?
    5·1 answer
  • A car travelling at 14.0 m/s approaches a traffic light. The driver applies the brakes and is able to come to halt in 5.6 s. Det
    11·1 answer
  • When are zeros significant when found to the trailing (to the right) of the decimal point?
    7·1 answer
  • Human sense impressions are subjective and qualitative
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!