Electric field strength = resistivity of copper x current density
where
p= 1.72 x 10^-8 <span>ohm meter
diameter = 2.05mm=.00205 m
current = 2.75 A
</span>get first the current density:
current density = current/ cross section area
find the cross section area
cross section area = pi.(d/2)^2;
cross section = 3.3 006x10-6 m^2
substitute the values
current density = 2.75A/3.3006x 10-6m^2
current density=35.55 x1 0^2 A/m^2
Electric field stregnth =1.72 x 10^-8 ohm meter x 35.55 x10^2 A/m^2
Electric field stregnth= 46.415 Volts/m
The electric field strength of copper is 46.415 V/m.
Answer:
E. greater than the angle of incidence.
Explanation:
Snell's law states that:
(1)
where
are the refractive index of the first and second medium
are the angle of incidence and refraction, respectively
For light moving from water to air, we have:
(index of refraction of water)
(index of refraction of air)
Substituting into (1) and re-arranging the equation, we get

which means that

so, the correct answer is
E. greater than the angle of incidence.
You need to move the decimal point between the six and nine. 6.9 X 10^-4
Answer:
true
Explanation:
Newton is the measure of the force with turns to be gravity multiplying the mass. Thus, the forces acts on the particles in the direction of the movement of the particles
The answer should be B. According to the conservation of energy, the energy cannot be created nor destroyed, but it can be transformed. Since the object is moving down, that means its height is decreasing, causing the potential energy decreasing and the kinetic energy increasing to fulfill the conservation law.