Preserved fossil<span> (like a fossil in amber, ice or tar.</span>
Answer:
4.24nm
0.385eV
Explanation:
Maximum wavelength (λmax) :
λmax = ( hc) /Φ
h = plancks constant = 6.63 * 10^-34
c = speed of light = 3*10^8
1ev = 1.6 * 10^-19
Φ = 2.93eV = 2.93* (1.6*10^-19) = 4.688*10^-19
λmax = [(6.63 * 10^-34) * (3 * 10^8)] / 4.688*10^-19
λmax = 19.89 * 10^-26 / 4.688*10^-19
λmax = 4.242 * 10^-7 m
λmax= 4.24nm
B.)
E = hc / eλ eV
λ = 3.75nm = 3.75 * 10^-7m = 375 *10^-9
E = (6.63 * 10^-34) * (3 * 10^8) / (1.6 * 10^-19) * (375 * 10^-9)
E = 19.89 * 10^-26 / 600 * 10^-28
E = 0.03315 * 10^-26 + 28
E = 0.03315 * 10^2
E = 3.315 eV
Stopping potential : (3.315 eV - 2.93eV) = 0.385eV
Answer:
The acceleration of the box is 1.125 m/s² towards right.
Explanation:
Mass of the box,
kg
Force acting towards right,
N
Frictional force acting towards left,
N
Let the acceleration be
m/s².
Now, net force acting on the box towards right is given as:

From Newton's second law of motion,

Therefore, the acceleration of the box is 1.125 m/s² towards right.
Answer:
Changes in the object's momentum (answer D)
Explanation:
A net force will cause an object to change its velocity, and that will affect the object's momentum, which is defined by the product of the object's mass times its velocity.
So, select the last option (D) in the given list.
<span>Old age and hundreds of thousands to millions of member stars.</span>