Answer:
0.546 ohm / μm
Explanation:
Given that :
N = 1.015 * 10^17
Electron mobility, u = 3900
Hole mobility, h = 1900
Ng = 4.42 x10^22
q = 1.6*10^-19
Resistivity = 1/qNu
Resistivsity (R) = 1/(1.6*10^-19 * 1.015 * 10^17 * 3900)
= 0.01578880889 ohm /cm
Resistivity of germanium :
R = 1 / 2q * sqrt(Ng) * sqrt(u*h)
R = 1 / 2 * 1.6*10^-19 * sqrt(4.42 x10^22) * sqrt(3900*1900)
R = 1 /0.0001831
R = 5461.4964 ohm /cm
5461.4964 / 10000
0.546 ohm / μm
Answer:
The speed will be "18km/s". A further explanation is given below.
Explanation:
According to the question, the values are:
Wavelength,



As we know,
⇒ 
On substituting the values, we get
⇒ 
⇒ 
⇒ 
⇒ 
or,
⇒ 
Answer:
3.46 seconds
Explanation:
Since the ball is moving in circular motion thus centripetal force will be acting there along the rope.
The equation for the centripetal force is as follows -
Where,
is the mass of the ball,
is the speed and
is the radius of the circular path which will be equal to the length of the rope.
This centripetal force will be equal to the tension in the string and thus we can write,

and, 
Thus,
m/s.
Now, the total length of circular path = circumference of the circle
Thus, total path length = 2πr = 2 × 3.14 × 2 = 12.56 m
Time taken to complete one revolution =
=
= 3.46 seconds.
Thus, the mass will complete one revolution in 3.46 seconds.
Answer:
d d d d dd d d d d d dd d d d d dd d