
<u>Explanation:</u>
Velocity of B₁ = 4.3m/s
Velocity of B₂ = -4.3m/s
For perfectly elastic collision:, momentum is conserved

where,
m₁ = mass of Ball 1
m₂ = mass of Ball 2
v₁ = initial velocity of Ball 1
v₂ = initial velocity of ball 2
v'₁ = final velocity of ball 1
v'₂ = final velocity of ball 2
The final velocity of the balls after head on elastic collision would be

Substituting the velocities in the equation

If the masses of the ball is known then substitute the value in the above equation to get the final velocity of the ball.
The simplest answer would be "acceleration due to gravity."
The exact value of this acceleration changes depending on which planet your on (for example).
Answer: Scientists believe the missing carbon has found a sink in the Northern Forest. Scientist have come up with this idea because they believe consequences of global warming contributed to significant extent to the northern forest carbon sinking processes. In addition to that, scientists describe a process where the oceans of the world sink carbon to create a balance of the ecosystem. That is why they are not 100% sure.
Explanation:
Answer: SI unit of pressure
Explanation: The pascal (pronounced pass-KAL and abbreviated Pa) is the unit of pressure or stress in the International System of Units (SI). Reduced to base units in SI, one pascal is one kilogram per meter per second squared; that is, 1 Pa = 1 kg · m-1 · s-2.
Hope this helps! Have a fantastic rest of ur day, luv!
Answer: 3.49 s
Explanation:
We can solve this problem with the following equation of motion:
(1)
Where:
is the final height of the ball
is the initial height of the ball
is the initial velocity (the ball was dropped)
is the acceleratio due gravity
is the time
Isolating
:
(2)
(3)
Finally we find the time the ball is in the air:
(4)