The answer is (2). You can think about this question in terms of the Bohr's model of the atom or in terms of quantum chemistry. In the Bohr model, electrons exist in discrete "shells," each respresenting a fixed spherical distance from the nucleus in which electrons of certain energy levels orbit the nucleus. The larger the shell (the greater the "orbit" radius), the greater the energy of the "orbiting" electron (I use quotations because electrons don't actually orbit the nucleus in the traditional sense, as you may know). Thus, according to the Bohr model, a third shell electron should be farther from the nucleus and have greater energy than an electron in the first shell.
The quantum model is differs drastically from the Bohr model in many ways, but the essence is the same. A larger principal quantum number indicates 1) greater overall energy and 2) a probability distribution spread a bit more outward.
Answer:
C. Mutations are a change in DNA or a chromosome and can be helpful, harmful or may have no affect.
Explanation:
- Mutations are spontaneous random changes that occurs in the genetic make up of an organisms. Mutations are rare and their rate of occurrence is random.
- Mutations may occur on the gene level known as gene mutations or at chromosome levels called chromosomal mutations.
- Mutations may be beneficial, harmful or have no effect on a given organisms. Harmful mutations cause disorders that may lead to abnormality or death of an organisms. Beneficial mutations improve an organisms adaptability to the environment.
633.97 L
Explanation:
Well use the combined gas law;
P₁V₁T₁ = P₂V₂T₂
We need to change the temperatures into Kelvin;
18.9°C= 292.05 K
5.9°C = 279.05 K
756 * 512 * 292.05 = 639 * V₂ * 279.05
113,044,377.6 = 178,312.95 V₂
V₂ = 113,044,377.6 / 178,312.95
V₂ = 633.97 L
This is late but for anyone else who needs it...It's D. Far left