Answer:
Quadratic Formula
so
x = -5
and
x = 0.5
Step-by-step explanation:
Whenever you see a problem in this form, which you will see a lot of, you can try to factor it or use the "least squares" method or what have you, but those won't always work, unfortunately.
Fortunately, the quadratic formula will never fail you with quadratic expressions.
This is the Quadratic Formula

a is the the number on the variable with the exponent ^2
b is the number on the variable with no exponent
c is the third number
a and b cannot be equal to 0; c can be
Since we're looking for a number with an equation that has a square root in it, we're going to get two answers. These two answers come from the radical being separately added AND subtracted from the radical. It's basically two problems.
Plugging in our numbers to this equation gives us x values of -5 and 0.5. This will always work with polynomials with factors of ^2 in them.
If you have a TI-84 calculator or newer, there's a tool on it that will factor polynomials like this one for you just by giving it the numbers.
Answer:
y = -3/2x - 15
Step-by-step explanation:
Use the slope intercept form y = mx + b to substitute the slope = -3/2 and the point (-8, -3).
y = mx + b
-3 = -3/2(-8) + b
-3 = 12 + b
-15 = b
y = -3/2x - 15
The solution to the equation x(x+4) = 6 is x = -2 + √10 or x = -2 - √10 after solving with the quadratic formula.
<h3>What is a quadratic equation?</h3>
Any equation of the form
where x is variable and a, b, and c are any real numbers where a ≠ 0 is called a quadratic equation.
As we know, the formula for the roots of the quadratic equation is given by:

We have an equation:
x(x + 4) = 6
By distributive property:
x² + 4x = 6
x² + 4x - 6 = 0
a = 1, b = 4, c = -6
Plugging all the values in the formula:

After calculating:


Thus, the solution to the equation x(x+4) = 6 is x = -2 + √10 or x = -2 - √10 after solving with the quadratic formula.
Learn more about quadratic equations here:
brainly.com/question/2263981
#SPJ1
Answer:
There are 70 two digit numbers that are greater than or equal to 30
Step-by-step explanation:
hope it helps you