Answer: If homeostasis is disrupted, it must be controlled or a disease/disorder may result.
Explanation: What happens if there's disruption? Your body systems work together to maintain balance. If that balance is shifted or disrupted and homeostasis is not maintained, the results may not allow normal functioning of the organism.
Answer:
The solution to this question can be defined as follows:
Explanation:
Please find the attached file for the solution:
Answer:
M = 20.5 g/mol
Explanation:
Given data:
Volume of gas = 1.20 L
Mass of gas = 1.10 g
Temperature and pressure = standard
Solution:
First of all we will calculate the density.
Formula:
d = mass/ volume
d = 1.10 g/ 1.20 L
d = 0.92 g/L
Now we will calculate the molar mass.
d = PM/RT
0.92 g/L = 1 atm × M / 0.0821 atm.L/mol.K ×273.15 K
M = 0.92 g/L × 0.0821 atm.L/mol.K ×273.15 K / 1 atm
M = 20.5 g/mol
since the unit for the heat of fusion is kJ/mol, you're going to have to convert the grams into moles in order to cancel out the unit. After that, you can solve like normal.
In an average mass, each entry has equal weight. In a weighted average, we multiply each entry by a number representing its relative importance.
Assume that your class consists of 15 girls and 5 boys. Each girl has a mass of 54 kg, and each boy has a mass of 62 kg.
<em>Average mass</em> = (girl + boy)/2 = (54 kg + 62 kg)/2 = <em>58 kg</em>
<em>Weighted average (Method 1)
</em>
Use the <em>numbers of each</em> gender (15 girls + 5 boys)
,
Weighted average = (15×54 kg + 5×62 kg)/20 = (810 kg + 310 kg)/20
= 1120 kg/20 = <em>56 kg</em>.
If you put all the students on one giant balance, their total mass would be
1120 kg and the average mass of a student would be <em>56 kg.
</em>
<em>Weighted average (Method 2)
</em>
Use the <em>relative percentages</em> of each gender (75 % girls and 25 % boys).
Weighted average = 0.75×54 kg + 0.25×62 kg = 40.5 kg + 15.5 kg = <em>56 kg</em>
Each girl contributes 40.5 kg and each boy contributes 15.5 kg to the <em>weighted average</em> mass of a student.