Metal conductivity generally goes down or resistivity goes up with temperature goes up.
We can calculate years by using the half-life equation. It is expressed as:
A = Ao e^-kt
<span>where A is the amount left at t years, Ao is the initial concentration, and k is a constant.
</span>From the half-life data, we can calculate for k.
1/2(Ao) = Ao e^-k(1620)
<span>k = 4.28 x 10^-4
</span>
0.125 = 1 e^-<span>4.28 x 10^-4 (</span>t)
t = 4259 years
WATER is wet to make it a more marketable commodity
117 L. You can start by making a table to organize the information you are given. Then, you can use the formula PV/T=PV/T and plug in the numbers you have. You then solve for the missing volume. Remember that the initial pressure, temperature, and volume should be on one side of the equal sign, and the final pressure, volume, and temperature should be on the other side.
Answer:
0.559 L
Explanation:
Step 1: Given data
- Moles of sodium iodide (n): 0.405 mol
- Molar concentration of sodium iodide (M): 0.724 M (0.724 mol/L)
Step 2: Calculate the volume of solution (V)
The molarity is equal to the moles of solute divided by the liters of solution.
M = n/V
V = n/M
V = 0.405 mol/(0.724 mol/L) = 0.559 L